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Abstract— Formal languages, each with its own syntax and 

semantics, enable precise communications within specific 

domains. However, in model-based engineering and data fusion, 

no single language provides a comprehensive description: multiple 

formal languages are required, and these must be precisely related 

to one another. This begs the questions as to what formal language 

can be used to express the relationships between the elements of 

two or more formal languages? There is almost a total lack of such 

languages and, in their absence, most relationships are expressed 

procedurally with code that is specific to the referenced languages. 

This paper introduces a Concept Representation Language, 

capable of uniformly representing concepts and relationships at all 

levels of abstraction. The paper covers the motivation, design 

principles, and infrastructure provided by the language.  
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I. INTRODUCTION 

Natural languages, while flexible, tend to lack precision. 
Where precision is required, formal languages are created: 
algebras in mathematics; programming languages and data 
languages in computer science; modeling languages in model-
based engineering (MBE), and conceptual models in semantics. 
These languages collectively represent a wide range of concepts, 
from hardware-level programming (e.g. the MOV assembly 
language instruction that moves the contents from a register to a 
memory location) to conceptual semantics (e.g. the is-a concept, 
as in an automobile is-a vehicle) to mathematics (e.g. a 
morphism is a structure-preserving map from one mathematical 
structure to another). Each formal language enables precise 
communications within a specific domain of discourse. But 
comprehensive modeling of entire application domains typically 
requires the use of multiple formal languages and presents 
complex challenges in relating the languages. This paper is a 
start at answering a single question: can this complexity be 
reduced by crafting a single representation language capable of 
representing all possible concepts and relationships? 

In MBE, representing an entire application domain and its 
corresponding solutions – from problem statement through 
requirements, design, and implementation - inevitably involves 
the use of multiple models and multiple formal languages. 
Languages such as RDF, OWL, and SBVR seek to capture 
natural language and business semantics [1, 2, 3]. Others such as 
UML and SysML focus on the behavior and structure of the 
design [4, 5]. Various implementation languages (e.g. Java, Go, 
Javascript, SQL, XML, JSON) complete the design.  

Similarly, the Internet of Things (IoT) gives rise to a wide 
variety of information about the world. Its related data fusion 
problem requires correlating this information to establish a 
comprehensive model of the world. This requires relating 
models from multiple domains to formulate a complete 
situational representation [6, 7]. 

These multiple models – and their related languages - do not 
live in isolation: to understand a domain in its entirety, these 
various representations must be related to one another. “Core to 
MBE is the integration of descriptive/design models with the 
computational models” [8]. The ability to relate the concepts of 
one model to those of other models is essential.  

Comprehensive modeling presents challenges in 
representing relationships. To begin with, most languages 
simply do not provide the capability of directly representing all 
possible relationships between combinations of the concepts 
they represent. The relationship problem becomes further 
complicated when the concepts to be related are expressed in 
different languages.  

Since most formal languages are only intended to represent 
one aspect of a domain (e.g. a semantic model, a process model, 
a database schema, a data representation), a comprehensive 
domain model requires not only these separate representations 
but also a means for representing the relationships between 
them. If these relationships cannot be expressed within one of 
the existing languages, then new languages must be introduced 
to represent the relationships.  

The abundance of transformation languages such as ATL, 
QVT, and XSLT is indicative of the extent of the problem [9, 10, 
11]. But even these languages are insufficient: they generate one 
model from another rather than expressing a relationship 
between representations. The challenge is to relate elements of 
two or more existing languages and maintain these relationships 
as the models evolve. Even more challenging is the 
representation of relationships between relationships – relations 
between relations. 

 Consider the Object Modeling Group’s (OMG’s)  Semantic 
Information Modeling for Federation (SIMF) effort. SIMF seeks 
to facilitate the transformation of data from one physical data 
structure to another by leveraging mappings to and from 
semantic models (Fig. 1) [12]. Using this approach, an XML file 
containing information from a banking domain might be 
transformed into a JSON representation of information in a risk 
domain. The physical XML data representation is transformed 
into a logical XML representation (Map 1) and then into a 
semantic representation (Map 2). The semantic representation is 
then transformed into a logical JSON representation (Map 3) and 



then into a physical JSON representation. In practice, however, 
such multiple transformations are likely to be inefficient. The 
ultimate objective may be to collectively take the series of data 
structures and mappings and generate a direct transformation 
from the physical XML representation to the physical JSON 
representation (Map 5).  

The SIMF effort exposes an underlying problem in common 
with MBE and data fusion: the formal languages used often have 
different representation schemes based on different sets of 
concepts. To work with these multiple domains, the represented 
concepts need to be related to one another - across languages. 
These relationships (Map 1 through Map 5 in Fig. 1) require a 
language to represent them, one that subsumes the 
representations of concepts from the languages being related. 
Sometimes the relationships themselves may need to be related 
to one another: in the example Map 5 is derived from Map 1 
through Map 4, requiring mappings from the Map 1 through 
Map 4 relationships to the Map 5 relationship.  

Expressing relationships generally requires adding 
languages, and this addition of languages adds significant 
complexity to constructing and maintaining comprehensive 
domain models. Two factors drive this complexity: the variety 
of concepts involved and the variety of language representations 
for those concepts. While the variety of concepts is arguably the 
inherent complexity of the problem, the variety of representation 
schemes is simply an accident of history – one that can be 
avoided. Any representation language that is capable of 
representing the relevant concepts and relationships can be used.  

This paper seeks to answer a single question: can this 
complexity be reduced by crafting a single language capable of 
representing all possible concepts and relationships? Section II 
presents an example illustrating some major challenges in this 
endeavor. Section III analyzes the reasons that most existing 
languages cannot express certain relationships. Section IV 
summarizes the representation language objectives. Section V 
introduces the core concepts of the Concept Representation 
Language (CRL), a trial balloon representation language. 
Section VI discusses the challenges in grounding CRL and 
making it practical. Section VII presents some examples, 
Section VIII discusses related work, and Section IX concludes 
with a discussion of current status and planned work. 

The Concept Representation Language (CRL) presented 
here is intended to provide a comprehensive solution to the 
representation problem.  CRL uniformly and consistently 
represents both concepts and the relationships between them. It 
is intended to represent any discrete concept and any discrete 
relationship between concepts. It is conjectured that there is an 
isomorphic mapping from any representation in any other 

language to a CRL representation. With these capabilities, CRL 
provides a single language that can represent all discrete 
concepts and all discrete relationships.  

II. A CONCRETE EXAMPLE 

The relationship problem is common in the IT world. An 
order management system might generate an XML 
representation of a customer, orders, and related shipments (Fig. 
2 left). (For simplicity, an abstracted logical model is shown.) A 
corresponding UML domain (semantic) model is shown on the 
right. There are two important differences in these 
representations that motivate the ensuing discussion. The first is 
that the XML representation on the left is hierarchical: a 
customer contains orders which, in turn, contain shipments [13, 
14]. XML containment is a one-to-many relationship. In the 
UML representation on the right, the relationships are peer-to-
peer. Specifically, there is a many-to-many relationship between 
orders and shipments in the UML model [4]. This reflects the 
enterprise’s ability to consolidate shipping: one shipment may 
contain goods from multiple orders.    

The second motivating difference is the representation of 
different kinds of customers, individuals vs. companies. In 
XML, the distinction is made via the Customer attribute 
customerType, with allowed values of INDIVIDUAL and 
COMPANY. In the UML representation, Individual and 
Company are represented by different classes with a common 
Customer parent class.  

The specific challenge is to express the relationships 
between the XML containment relationships and the UML peer-
to-peer relationships and between the XML enumerated values 
(instances) and the UML classes.  

III. LANGUAGES MAKE ONTOLOGICAL COMMITMENTS 

There are certain language characteristics that keep many 
languages from being able to play this universal role. Most 
formal languages force the language user to make ontological 
commitments when representing concepts and relationships [15, 
16]. These commitments codify assumptions about the 
categories (kinds or types) of things that the elements of the 
language represent. English, for example, distinguishes between 
nouns, verbs, adjectives, and adverbs. UML distinguishes 
between classes, associations, activities, and packages. RDF has 
notions of triples, graphs, and terms. Most mathematical 
languages distinguish between operators and operands.  

 

Figure 2.   Differing Representations of Customers, Orders, and Shipments 
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These ontological commitments – these built-in type 
distinctions – enable efficient communication within the 
intended domain of discourse. But when it comes to relating one 
domain to another, they actually present obstacles: the 
ontological commitments (the types) in one language do not 
necessarily align exactly with those of another. In order to relate 
the elements of an XML data structure to the elements of a UML 
model these differences in ontologies must be addressed. More 
generally, to express relationships between languages, their 
ontological categories must be related. 

The following considers the problems that arise when UML 
is used as a tool for modeling both multiple languages and the 
relationships between them. This exercise is not meant to 
denigrate UML in any way, merely to point out its limitations in 
playing this unintended role. The attempt identifies the nature of 
the challenges so that they can be avoided when crafting a less 
restrictive representational language. Similar representational 
limitations can be found in nearly all languages. 

A. Challenge 1: Entities vs. Relationships 

Consider the problem of mapping of the XML 
representations of Orders and Shipments to their corresponding 
UML representations (Fig. 3). In UML, an association is the 
representation of a relationship between entities known as 
classes. Graphically, a class is represented as a rectangle and an 
association is represented as a solid line between classes. Using 
this approach, the XML Order and Shipment and the UML Order 
and Shipment are represented as classes (rectangles) while both 
the XML and UML OrderShipmentRelations are represented as 
solid lines. Similarly, the Order Mapping and Shipment 
Mapping can be expressed as associations between classes. 

But a problem arises in representing the relationship between 
the XML and UML OrderShipmentRelations: a UML 
association cannot be used to represent an association between 
associations. Representing this in UML requires a change in the 
way in which the OrderShipmentRelations are modeled. Each of 
these associations would have to be converted into a UML 
association class (a class rectangle with a dotted-line connection 
to an association solid line) and then the two Association Classes 
could be related by an association (Fig. 4). 

Why is this a problem? Assume the UML models for both 
the XML and UML representations already exist as shown in 
Fig. 3. Given these existing models, how can the mapping 
between the OrderShipmentRelations be represented? The 
answer is, it can’t - not without modifying the existing models 
of both languages. 

What this example illustrates is the consequence of not 
treating relationships (i.e. associations) as first-class citizens (i.e. 
classes) in the representational language. This makes it 
impossible to represent a relationship between relationships. 
While UML does, indeed, have a common conceptual 
abstraction between classes and associations that could play this 
role (it is called the classifier), this concept is not instantiable 
(representable). To represent a concept in UML you must make 
an ontological commitment: it is either a class or an association 
– or an association class.  

This leads to the first representational principle: 
Relationships must be first-class elements in the 
representational language: It must be possible for a relationship 
to relate any element to any element, including another 
relationship. 

B. Challenge 2: Types vs Instances 

Another common ontological commitment requires 
specifying whether a given element is a type or an instance of a 
type. Fig. 5 illustrates the challenge of mapping the XML 
customer representation into the corresponding UML 
representation. While the XML Customer (a class) can be 
associated with the UML Customer (also a class), UML provides 
no mechanism for associating instances (the enumeration values 
of the CustomerType) with classes: instances are at a different 
meta-level than classes. Other than the generic UML 
dependency (the dashed arrow used in the diagram), the only 
supported UML relationship between classes and instances is the 
instance relation, which is not appropriate here: The 
INDIVIDUAL instance of CustomerType is not an instance of 
the UML Individual class. 

The problem here is that UML represents instances 
differently than types (classes) and does not have a general 

 

Figure 3.    The Relationship Mapping Problem 

 

Figure 4.    UML Representation of Relationship Mapping 

 

Figure 5.    Mapping Instances (Enumeration Values) to Classes 



mechanism for modeling relationships between instances and 
types.  

A similar issue arises with elements at higher metalevels 
(Fig. 6). In UML, classes (e.g. the XML Customer the UML 
Customer) are instances of the metaclass Class that is part of the 
UML specification. This relationship is not explicitly 
representable, which makes it impossible to map the class-
metaclass relationship in one representation to a different kind 
of relationship in another representation. Furthermore, UML 
itself provides no mechanism for denoting relationships between 
metalevels other than the generic dependency shown in Fig. 6.  

Note also that XML Customer and UML Customer play the 
role of the class (the type or category) in Fig. 5 while the same 
elements play the role of instances in Fig. 6: the notions of type 
and instance are relative to a meta-level, not absolute. In other 
words, they are both relationships to meta-levels.  

This leads to the second representational principle: A 
representational element should be able to represent a concept 
at any level of abstraction without making an ontological 
commitment to the level of abstraction. Thus, the same element 
can represent both a class and an instance of some other class. 
More broadly, the notion of a meta-level is just a concept that 
can be represented and the membership of a given element in a 
given metalevel can also be explicitly represented as a 
relationship within the model. 

IV. REPRESENTATIONAL DESIDERATA 

Before getting into the design of CRL, one thing needs to be 
made perfectly clear: ontological commitments are useful. What 
is needed is a representational language in which ontological 
commitments are not forced by the representational language but 
instead are explicitly represented within the language. 

So, what does a representational language need to do? 

1) Represent a discrete concept 

2) Represent a reference to an existing representation 

3) Represent the composition of representations to form 

more complex representations 

4) Not force any ontological commitment to any level of 

abstraction  

5) Represent that one representation is a refinement of 

another representation  

6) Represent relationships in such a way that relationships 

can, themselves, be related 
The notion of refinement subsumes the notions of both 

generalization and instantiation since the representations being 
related are uncommitted with respect to their level of abstraction. 

Both refinement and composition are relationships between 
representational elements. 

While these capabilities provide the ability to represent 
arbitrarily complex concepts and relationships, the resulting 
representations will contain much fine-grained detail that 
generally comes into play only when detailing relationships. 
Since such detail can be distracting to people, one more 
requirement is added: 

7) Enable simple (abbreviated) representations of full 

representations when full explicit detail is not required. These 

representations simply elide the display of the detail. 

V. CRL CORE IDEAS 

The first requirement for CRL is to be able to represent a 
concept – any concept, at any level of abstraction. This is the 
role of an Element (Fig. 7). Each Element has an identifier that 
provides a unique identity (e.g. a GUID) for the concept being 
represented. Of course, without further information it will be 
unclear to a human reader which concept is being represented: 
this is addressed later in the discussion of grounding.  

The second requirement is to reference an existing concept. 
The Reference serves this purpose – it represents the idea of a 
reference. It has one attribute, the referencedElement, which 
represents the actual value of the pointer to the Element being 
referenced. The reference and the pointer value are distinct: the 
reference retains its identity even if the pointer value changes. 
Graphically, an arrow represents this pointer value. A Reference 
is a refinement of an Element:  every Reference is an Element. 
Fig. 7 uses the UML Generalization notation to represent this 
refinement. Refinement, as a representational concept, will be 
discussed shortly.  

The third representational requirement is composition. Some 
concepts are complex, comprising a number of sub-concepts. 
This composition is expressed through the Ownership relation: 
ownedElements are a part of the owningElement. Here’s an 
example. 

A. Example: Representing an Association in CRL 

Fig. 8 shows the CRL representation of the UML 
OrderShipmentRelation from Fig. 2. The relation is represented 
as a refinement of Element (indicated as <<Element>> using the 
UML Stereotype notation to conserve space). The names in the 
rectangles are just reminders of the concepts being represented 
and are not part of the formal model. Each association end is 
represented by a refinement of ElementReference, and each of 
these is owned by (is a part of) the relation. Each owned 

 

Figure 6.    Elements at Different Meta-Levels 

 

Figure 7.    CRL Core Ideas 
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reference represents the role of the indicated concept with 
respect to the association and the pointer arrow indicates the 
concept being referenced. Associations with arbitrary cardinality 
can be represented in this manner.  

Fig. 9 shows an instance of the UML: 
OrderShipmentRelation. The element labeled <order 123 to 
shipment 57> represents the instance as a refinement of the 
UML:OrderShipmentRelation. Its <order 123Ref> instance is a 
refinement of the UML:OrderReference. The referenced order, 
<order 123>, is a refinement (an instance) of the concept 
UML:Order.   

Thus far, the concept of Refinement has been used without a 
formal definition. The fifth representational requirement is the 
ability to indicate that one representation is a refinement of 
another more abstract representation. The CRL notion of 
Refinement subsumes the ideas of both generalization and 
instantiation. In Fig. 9 refinement (represented using the UML 
Generalization notation) is being used to indicate traditional 
instantiation (e.g. the relation between UML: 
OrderShipmentRelation and <order 123 to shipment 57>).  If 
explicit differentiation between generalization and instantiation 
is desired, the Refinement concept can be further refined to 
represent Generalization and Instantiation as concepts. Instances 
(refinements) of these can, in turn, be used to represent the 
generalizations and instantiations in the model.  

VI. GROUNDING THE MODEL 

Reducing CRL to practice presents some challenges, 
beginning with the representation of Refinement. While 
refinement could be represented in the same manner as the 
association shown in Fig. 8, this example uses refinement: the 
association is a refinement of Element, and each reference is a 
refinement of ElementReference. This would make the 
Refinement representation infinitely recursive. To break this 
recursion and ground the model, Refinement is reified as a 
distinct concept and modeled as a refinement of Element (Fig. 
10). The reified Refinement has two pointer values indicating 
the abstractElement and the refinedElement. 

Another issue that arises in grounding the model is the need 
to represent – and reference - values: pointers and literals. In 
order for values to be referenced and participate in associations, 
they must have identities. The BaseElement provides identity 
and serves as a common abstraction between Element and 
Value. The CRL Literal represents the literal value as a string. 
The CRL Pointer represents the value of the pointer. Note that 
with this change, Elements now own BaseElements, which 
means they may own values as well as concepts. 

The newly added BaseElement, Value, Pointer, and Literal 
concepts also need to be referenced so that they can participate 
in relationships. For this purpose, Pointer and Reference are 
further refined to indicate the type of the pointer and reference. 
Each of the refined pointers has an attribute indicating the object 
(this is the actual pointer value), and each of the references has 
a derived attribute indicating the relevant pointer. Note that, for 
the purpose of mapping pointers, pointers to pointers are 
introduced along with corresponding references.  

Giving values explicit representations and providing 
references to them allows the creation of associations in which 
both values and elements can participate. The Fig. 5 relationship 
between the XML “INDIVIDUAL” value and the UML 
“Individual” class can now be represented. CRL can now 
represent a relationship of anything to anything, satisfying 
representational requirement six. 

A. Attributes Derived from Ownership Relations 

A number of derived attributes are shown in Fig 10: 
following the UML convention, these are attributes with a slash 
(“/”) in front of the name. For Elements and their refinements 
these values are derived from the presence of specific 
ownedElements. For example, the /literalPointer attribute of a 
LiteralReference is an indirect way of indicating a LiteralPointer 
that is an ownedBaseElement of the LiteralReference (Fig 11). 
There is a constraint that, for these derived attributes, only one 
instance of the indicated ownedElement is allowed. The 
abstractElement, refinedElement, referencedElement, and 
owningElement attributes are similarly derived: each is 
indicated by the presence of an ElementPointer as an 
ownedBaseElement with the Pointer’s elementPointerRole 
indicating which attribute the pointer is intended to represent. 

 

Figure 8.    Representation of an Association 
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Figure 9. An Association Instance 
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B.  Aiding Human Understanding 

As mentioned previously, concepts identified only by the 
Element’s identifier are not going to be recognizable by human 
readers. For this reason, the optional derived attribute /name is 
added to the model. The actual value of the name is derived from 
the structural pattern shown in Fig. 12. Providing a name for 
element J involves adding a LiteralPointer to J’s 
ownedBaseElements with the literalPointerRole = “NAME”. 
The literal indicated by this pointer contains the actual name. By 
convention, this literal would also an ownedBaseElement of J, 
but this is not a requirement of the model. The reason for 
providing this structure is to facilitate the representation of 
mappings involving the name and the pointer to the name (i.e. 
the value of the pointer).  It is important to note that this name is 
not intended to model the potentially complex semantic 
relationship between names and concepts: its provided simply as 
an aid to human understanding in identifying the concept being 

represented. In contrast with Elements and Literals, whose 
names are assignable, the names of Pointers are constants built 
into the model. 

In similar fashion, definitions and URIs can be optionally 
added to the model. Definitions provide a facility for deeper 
human understanding of the concept being represented, while 
URIs provide a mechanism for identifying individual concepts 
without having to know the system-generated identifier. 

VII. EXAMPLES 

A. Modeling Sets 

The concept of a Set (Fig. 13) is represented by an Element. 
Each member of the set is represented as a 

 

Figure 10.    Grounded Model 

-/elementPointerPointer : ElementPointerPointer

attributes

ElementPointerReference

-/baseElementPointer : BaseElementPointer

attributes

BaseElementReference

-/literalPointerPointer : LiteralPointerPointer

attributes

LiteralPointerReference

-element : Element

attributes

-elementPointerRole : ElementPointerRole
...

ElementPointer

attributes

-/nameLiteralPointer : LiteralPointer

-/definitionLiteralPointer : LiteralPointer

-/uri : Literal

-/definition

-/uriLiteralPointer : LiteralPointer

Element

attributes

...

-literalPointerRole : LiteralPointerRole

-literal : Literal

LiteralPointer
attributes

-/elementPointer : ElementPointer

ElementReference

attributes

...

-elementPointer : ElementPointer

ElementPointerPointer

attributes

-/literalPointer : LiteralPointer

LiteralReference

...

attributes

-baseElement : BaseElement

BaseElementPointer

-literalPointer : LiteralPointer

attributes

...

LiteralPointerPointer

enumeration literals

REFERENCED_ELEMENT

ABSTRACT_ELEMENT

REFINED_ELEMENT

OWNING_ELEMENT

ElementPointerRole

«enumeration»

enumeration literals

NAME

DEFINITION

VALUE

URI

LiteralPointerRole

«enumeration»

attributes

-/uri

-version

-/name

-identifier

BaseElement

Refinement Reference
attributes

-literalValue

Literal

attributes

-uri

Value

Pointer

Ownership

-/owningElement 0..1

-ownedBaseElements

*

AbstractPointer

-/abstractElement

RefinedPointer

-/refinedElement

ReferencePointer

-/referencedElement

 

Figure 11.    LiteralReference Structure 
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Figure 12.    Structure for Providing Element Names 
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BaseElementReference, which can point to any BaseElement. 
Sets can be refined to indicate the type of element that is allowed 
in the set. In the figure, a PeopleSet uses PeopleSetMember 
references to indicate that the member is a Person. PeopleSet is 
a refinement of Set, PeopleSetMember is a refinement of 
SetMember, and Person is an Element which, by definition, is a 
refinement of BaseElement. 

An instance of a PeopleSet might be the 
AuthorsOfThisPaperSet, which is a refinement of PeopleSet. 
The member references are refinements of PeopleSetMember, 
and the members must all be refinements of Person.  

B. Modeling a Mapping 

An everyday challenge in IT is the transformation of one data 
structure into another, often with different representations of 
relationships. A common requirement is to map the hierarchical 
structure of XML to a peer-to-peer structure.  

The example of Fig. 2 shows an XML structure and a 
corresponding UML structure. The mappings between Orders 
and between Shipments in the two representations is 
straightforward: each is a simple 1:1 mapping (Fig. 14). The 
mapping of the OrderShipmentRelation is more complicated. 
Because of the hierarchical structure of XML, the XML 
representation of the relationship can be simply modeled as a 
collection of ElementReferences belonging to the XML:Order, 
each referencing an associated XML Shipment. The UML 
representation is more complicated. Because it is a peer-to-peer 

association, the UML representation comprises the 
UML:OrderShipmentRelation and two owned 
ElementReferences, one to the UML:Order and the other to the 
UML:Shipment. The RelationMap thus maps a single object on 
the XML side (the XML:Shipments) to a structure on the UML 
side (the UML:OrderShipmentRelation and its two element 
references). Each instance of the XML:Shipments corresponds 
to an instance of the UML:OrderShipmentRelation structure. 

The mapping of Customer is also complex (Fig. 15). 
Although the top-level correspondence of Customer is simple, 
the XML indication of customer type involves a reference to a 
CustomerType enumeration value while the UML 
representation utilizes different classes. Consequently, the 
CustomerMap utilizes two subordinate maps, the IndividualMap 
and the CompanyMap, that show the correspondence between 
the XML CustomerType values and the classes used by the 
UML representation. 

VIII. RELATED WORK 

Most work on representations is either confined to a specific 
domain or addresses mappings between domains. Two of the 
most widely used representations within domains are UML [4], 
which is focused on engineering designs, and RDF [1], which is 
focused on information representation on the web. XSLT [11] is 
a widely used language designed to model the transformation 
(mapping) of XML documents into other XML documents.  

 

Figure 13.    Representations of Sets 

  

Figure 14.    OrderShipmentRelation Mapping 
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Figure 15.    Customer Mapping 
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The most closely related work is that of Medhavan et al. [17] 
which explores mappings between domain models. The 
challenges they identify relate with those discussed herein: “The 
first issue … is that we need to specify a mapping between 
models in different representation languages. The second issue 
is that not all concepts in one model exist directly in the other.” 
However, their approach to heterogeneity differs. “By nature, 
mappings will involve multiple representation languages. 
Therefore, a mapping language needs to be able to represent 
mappings between models in different languages. An alternative 
approach would be to first translate all the models into a 
common representation language, and then specify mappings as 
formulas in this language. However, it is often desirable to avoid 
the problems associated with designing a single representation 
language for all models…” They choose to pursue the multi-
representational method, while the CRL work explores the 
common representation language approach. 

IX. CURRENT STATUS AND PLANNED WORK 

CRL was originally designed to represent data structures and 
the mappings between them. It is conjectured that CRL has an 
isomorphic representation of any data structure comprising 
discreet entities and discrete relationships. One current research 
objective is to prove or disprove this conjecture. 

While developing CRL it became apparent that it can also be 
used to represent functions and programs. Thus, CRL can 
provide a uniform representation for both programs and the data 
upon which they operate. Furthermore, it was recognized that, 
by associating code fragments with individual function 
representations, these function representations can be made 
executable. 

An initial implementation of CRL was done in Java. 
However, the threading model and transactional semantics of 
Java turned out to be suboptimal for the desired execution 
model. A new implementation was created in the Go 
programming language. This implementation is named 
ActiveCRL to reflect its support for executable representations. 
The present implementation provides the representational 
infrastructure with serialization/deserialization, and an optional 
undo-redo capability for all changes. It has the infrastructure to 
associate Go functions with CRL Elements representing 
functions and to automatically trigger the execution of those 
functions when changes are made to their associated 
representation structure. Altering the CRL structures 
automatically triggers reevaluation of the functions. 

At present, all of the functions needed to manipulate the CRL 
representations have been implemented in Go and associated 
with corresponding CRL Elements. The stage is set for creating 
representations of programs that manipulate CRL 
representations and making them executable. The intent is to 
create an interactive graphical editor for CRL with all 
functionality except the device-specific graphic rendering being 
provided by executable CRL representations. ActiveCRL is very 
much a work in progress. The current version can be found at 
https://github.com/pbrown12303/activeCRL. 

While CRL provides many capabilities, it is not a panacea 
for multi-domain computing. Its representations are fine-grained 

and require more computational resources than specialized 
representations. On the other hand, CRL representations can be 
continuously extended to include new domains without 
modifying the representational scheme. This means that new 
domains and mappings can be added at runtime. The aim of 
current work is to establish the practicality of CRL for both 
passive representations and active executions. 

REFERENCES 
 

[1]  W3C, "RDF 1.1 Concepts and Abstract Syntax," World Wide Web 
Consortium, 2014. 

[2]  OWL Working Group, "OWL Web Ontology Language," W3C, 11 
December 2012. [Online]. Available: https://www.w3.org/OWL/. 
[Accessed 26 December 2017]. 

[3]  Object Management Group, "Semantics of Business Vocabulary and 
BusinessRules Version 1.4," 1 May 2017. [Online]. Available: 
http://www.omg.org/spec/SBVR/1.4/PDF. [Accessed 26 December 
2017]. 

[4]  OMG, "OMG Unified Modeling Language TM (OMG UML) Version 
2.5," Object Management Group, 2015. 

[5]  Object Management Group, "OMG Systems Modeling Language 
Version 1.5," 1 May 2017. [Online]. Available: 
http://www.omg.org/spec/SysML/1.5/PDF. [Accessed 26 December 
2017]. 

[6]  F. Castanedo, "A Review of Data Fusion Techniques," The Scientific 
World Journal, Vols. 2013, Article ID 704504, 19 pages, 2013.  

[7]  D. Lahat, T. Adali and C. Jutten, "Multimodal Data Fusion: An Overview 
of Methods, Challenges, and Prospects," Proceedings of the IEEE, vol. 
103, no. 9, pp. 1449 - 1477, 2015.  

[8]  NDIA Model Based Engineering Subcommittee, "Final Report of the 
Model Based Engineering (MBE) Subcommittee," National Defense 
Industrial Association, 2011. 

[9]  W. Piers, M. Barbero, F. Allialaire, T. Fortin, F. Jouault and H. 
Bruneliere, "ATL/Developer Guide," 31 August 2012. [Online]. 
Available: http://wiki.eclipse.org/ATL/Developer_Guide. [Accessed 26 
December 2017]. 

[10]  Object Management Group, "Meta Object Facility (MOF) 2.0 
Query/View/Transformation Specification Version 1.0," 1 April 2008. 
[Online]. Available: http://www.omg.org/spec/QVT/1.0/PDF. [Accessed 
26 December 2017]. 

[11]  W3C, "XSL Transformations (XSLT) Version 1.0," World Wide Web 
Consortium, 1999. 

[12]  Object Management Group, "Semantic Information Modeling for 
Federation (SIMF) Request for Proposal," OMG Document: ad/2011-12-
10, Needham, MA, 2011. 

[13]  W3C, "Extensible Markup Language (XML) 1.0 (Fifth Edition)," World 
Wide Web Consortium, 2008. 

[14]  W3C, "W3C XML Schema Definition Language (XSD) 1.1 Part 1: 
Structures," World Wide Web Consortium, 2012. 

[15]  J. F. Sowa, Knowledge Representation: Logical, Philosophical, and 
Computational Foundations, Pacific Grove, Ca: Brooks/Cole, 2000.  

[16]  G. Guizzardi, Ontological Foundations for Structural Conceptual 
Models, Enschede, The Netherlands: CTIT PhD Thesis Series, 2005.  

[17]  J. Madhavan, P. A. Bernstein, P. Domingos and A. Y. Halevy, 
"Representing and reasoning about mappings between domain models," 
in Eighteenth national conference on Artificial intelligence, Edmonton, 
Alberta, Canada, 2002.  

 


