A Concept Representation Language (CRL)

Paul C. Brown

Paul C. Brown Consulting LLC
Guilderland, NY, USA
pcbarchl@gmail.com

Abstract— Formal languages, each with its own syntax and
semantics, enable precise communications within specific
domains. However, in model-based engineering and data fusion,
no single language provides a comprehensive description: multiple
formal languages are required, and these must be precisely related
to one another. This begs the questions as to what formal language
can be used to express the relationships between the elements of
two or more formal languages? There is almost a total lack of such
languages and, in their absence, most relationships are expressed
procedurally with code that is specific to the referenced languages.
This paper introduces a Concept Representation Language,
capable of uniformly representing concepts and relationships at all
levels of abstraction. The paper covers the motivation, design
principles, and infrastructure provided by the language.

Keywords-concept; relationship; mapping; relationship
mapping; representation; representation mapping; abstraction;
meta-level

l. INTRODUCTION

Natural languages, while flexible, tend to lack precision.
Where precision is required, formal languages are created:
algebras in mathematics; programming languages and data
languages in computer science; modeling languages in model-
based engineering (MBE), and conceptual models in semantics.
These languages collectively represent a wide range of concepts,
from hardware-level programming (e.g. the MOV assembly
language instruction that moves the contents from a register to a
memory location) to conceptual semantics (e.g. the is-a concept,
as in an automobile is-a vehicle) to mathematics (e.g. a
morphism is a structure-preserving map from one mathematical
structure to another). Each formal language enables precise
communications within a specific domain of discourse. But
comprehensive modeling of entire application domains typically
requires the use of multiple formal languages and presents
complex challenges in relating the languages. This paper is a
start at answering a single question: can this complexity be
reduced by crafting a single representation language capable of
representing all possible concepts and relationships?

In MBE, representing an entire application domain and its
corresponding solutions — from problem statement through
requirements, design, and implementation - inevitably involves
the use of multiple models and multiple formal languages.
Languages such as RDF, OWL, and SBVR seek to capture
natural language and business semantics [1, 2, 3]. Others such as
UML and SysML focus on the behavior and structure of the
design [4, 5]. Various implementation languages (e.g. Java, Go,
Javascript, SQL, XML, JSON) complete the design.

Similarly, the Internet of Things (I0T) gives rise to a wide
variety of information about the world. Its related data fusion
problem requires correlating this information to establish a
comprehensive model of the world. This requires relating
models from multiple domains to formulate a complete
situational representation [6, 7].

These multiple models — and their related languages - do not
live in isolation: to understand a domain in its entirety, these
various representations must be related to one another. “Core to
MBE is the integration of descriptive/design models with the
computational models” [8]. The ability to relate the concepts of
one model to those of other models is essential.

Comprehensive modeling presents challenges in
representing relationships. To begin with, most languages
simply do not provide the capability of directly representing all
possible relationships between combinations of the concepts
they represent. The relationship problem becomes further
complicated when the concepts to be related are expressed in
different languages.

Since most formal languages are only intended to represent
one aspect of a domain (e.g. a semantic model, a process model,
a database schema, a data representation), a comprehensive
domain model requires not only these separate representations
but also a means for representing the relationships between
them. If these relationships cannot be expressed within one of
the existing languages, then new languages must be introduced
to represent the relationships.

The abundance of transformation languages such as ATL,
QVT, and XSLT is indicative of the extent of the problem [9, 10,
11]. But even these languages are insufficient: they generate one
model from another rather than expressing a relationship
between representations. The challenge is to relate elements of
two or more existing languages and maintain these relationships
as the models evolve. Even more challenging is the
representation of relationships between relationships — relations
between relations.

Consider the Object Modeling Group’s (OMG’s) Semantic
Information Modeling for Federation (SIMF) effort. SIMF seeks
to facilitate the transformation of data from one physical data
structure to another by leveraging mappings to and from
semantic models (Fig. 1) [12]. Using this approach, an XML file
containing information from a banking domain might be
transformed into a JSON representation of information in a risk
domain. The physical XML data representation is transformed
into a logical XML representation (Map 1) and then into a
semantic representation (Map 2). The semantic representation is
then transformed into a logical JSON representation (Map 3) and

Semantic Representation

Map/ \M?p A

«XML Logical» «JSON Logical»
Logical Representation A Logical Representation B

Map}/ N/Iap 4

«XML Physical» «JSON Physical»
Physical Representation A Physical Representation B

Map 5

Figure 1. The SIMF Concept

then into a physical JSON representation. In practice, however,
such multiple transformations are likely to be inefficient. The
ultimate objective may be to collectively take the series of data
structures and mappings and generate a direct transformation
from the physical XML representation to the physical JSON
representation (Map 5).

The SIMF effort exposes an underlying problem in common
with MBE and data fusion: the formal languages used often have
different representation schemes based on different sets of
concepts. To work with these multiple domains, the represented
concepts need to be related to one another - across languages.
These relationships (Map 1 through Map 5 in Fig. 1) require a
language to represent them, one that subsumes the
representations of concepts from the languages being related.
Sometimes the relationships themselves may need to be related
to one another: in the example Map 5 is derived from Map 1
through Map 4, requiring mappings from the Map 1 through
Map 4 relationships to the Map 5 relationship.

Expressing relationships generally requires adding
languages, and this addition of languages adds significant
complexity to constructing and maintaining comprehensive
domain models. Two factors drive this complexity: the variety
of concepts involved and the variety of language representations
for those concepts. While the variety of concepts is arguably the
inherent complexity of the problem, the variety of representation
schemes is simply an accident of history — one that can be
avoided. Any representation language that is capable of
representing the relevant concepts and relationships can be used.

This paper seeks to answer a single question: can this
complexity be reduced by crafting a single language capable of
representing all possible concepts and relationships? Section Il
presents an example illustrating some major challenges in this
endeavor. Section Il analyzes the reasons that most existing
languages cannot express certain relationships. Section 1V
summarizes the representation language objectives. Section V
introduces the core concepts of the Concept Representation
Language (CRL), a trial balloon representation language.
Section VI discusses the challenges in grounding CRL and
making it practical. Section VIl presents some examples,
Section VIII discusses related work, and Section IX concludes
with a discussion of current status and planned work.

The Concept Representation Language (CRL) presented
here is intended to provide a comprehensive solution to the
representation problem. CRL uniformly and consistently
represents both concepts and the relationships between them. It
is intended to represent any discrete concept and any discrete
relationship between concepts. It is conjectured that there is an
isomorphic mapping from any representation in any other

L Representation

1
[| |
\ WMLy | -orders [sUMLsflorders iy
| Customer | | <UML» + | Order |» I
. |
| MLy *«XML» | | OrderShipmentRelation |
| | -shipments|*
I —customer |1 P
[~customerType | <ML | «UMLy ||
ML Srder ! (ML Shipment | |
| | Customer P
CustomerType «Xhil» I |
| [ommeration erala| Ordershi mentRelatio \ %
| |INDMDUAL -shipmerts|” I ML «UML» !
COMPANY | o
| XML || Individual Com pany |
| Shipment | | |

Figure 2. Differing Representations of Customers, Orders, and Shipments

language to a CRL representation. With these capabilities, CRL
provides a single language that can represent all discrete
concepts and all discrete relationships.

II. A CONCRETE EXAMPLE

The relationship problem is common in the IT world. An
order management system might generate an XML
representation of a customer, orders, and related shipments (Fig.
2 left). (For simplicity, an abstracted logical model is shown.) A
corresponding UML domain (semantic) model is shown on the
right. There are two important differences in these
representations that motivate the ensuing discussion. The first is
that the XML representation on the left is hierarchical: a
customer contains orders which, in turn, contain shipments [13,
14]. XML containment is a one-to-many relationship. In the
UML representation on the right, the relationships are peer-to-
peer. Specifically, there is a many-to-many relationship between
orders and shipments in the UML model [4]. This reflects the
enterprise’s ability to consolidate shipping: one shipment may
contain goods from multiple orders.

The second motivating difference is the representation of
different kinds of customers, individuals vs. companies. In
XML, the distinction is made via the Customer attribute
customerType, with allowed values of INDIVIDUAL and
COMPANY. In the UML representation, Individual and
Company are represented by different classes with a common
Customer parent class.

The specific challenge is to express the relationships
between the XML containment relationships and the UML peer-
to-peer relationships and between the XML enumerated values
(instances) and the UML classes.

I1l. LANGUAGES MAKE ONTOLOGICAL COMMITMENTS

There are certain language characteristics that keep many
languages from being able to play this universal role. Most
formal languages force the language user to make ontological
commitments when representing concepts and relationships [15,
16]. These commitments codify assumptions about the
categories (kinds or types) of things that the elements of the
language represent. English, for example, distinguishes between
nouns, verbs, adjectives, and adverbs. UML distinguishes
between classes, associations, activities, and packages. RDF has
notions of triples, graphs, and terms. Most mathematical
languages distinguish between operators and operands.

These ontological commitments — these built-in type
distinctions — enable efficient communication within the
intended domain of discourse. But when it comes to relating one
domain to another, they actually present obstacles: the
ontological commitments (the types) in one language do not
necessarily align exactly with those of another. In order to relate
the elements of an XML data structure to the elements of a UML
model these differences in ontologies must be addressed. More
generally, to express relationships between languages, their
ontological categories must be related.

The following considers the problems that arise when UML
is used as a tool for modeling both multiple languages and the
relationships between them. This exercise is not meant to
denigrate UML in any way, merely to point out its limitations in
playing this unintended role. The attempt identifies the nature of
the challenges so that they can be avoided when crafting a less
restrictive representational language. Similar representational
limitations can be found in nearly all languages.

A. Challenge 1: Entities vs. Relationships

Consider the problem of mapping of the XML
representations of Orders and Shipments to their corresponding
UML representations (Fig. 3). In UML, an association is the
representation of a relationship between entities known as
classes. Graphically, a class is represented as a rectangle and an
association is represented as a solid line between classes. Using
this approach, the XML Order and Shipment and the UML Order
and Shipment are represented as classes (rectangles) while both
the XML and UML OrderShipmentRelations are represented as
solid lines. Similarly, the Order Mapping and Shipment
Mapping can be expressed as associations between classes.

But a problem arises in representing the relationship between
the XML and UML OrderShipmentRelations: a UML
association cannot be used to represent an association between
associations. Representing this in UML requires a change in the
way in which the OrderShipmentRelations are modeled. Each of
these associations would have to be converted into a UML
association class (a class rectangle with a dotted-line connection
to an association solid line) and then the two Association Classes
could be related by an association (Fig. 4).

Why is this a problem? Assume the UML models for both
the XML and UML representations already exist as shown in
Fig. 3. Given these existing models, how can the mapping
between the OrderShipmentRelations be represented? The
answer is, it can’t - not without modifying the existing models
of both languages.

@XMLY Order Mapping albLy
Order |1 1 | Order
-orders |7
gxrgll_r;h\pmenﬂ?e\ahon CUMLe
.- B /OrderSh\pmentRe\at\on
How do you express this ﬁ
mapping?
-shipments | * -shipments | *
XMLy Shipment Mapping «UML»
Shipment |1 1 Shipment

Figure 3. The Relationship Mapping Problem

L e Order Mapping ML %
Order |1 1 | Order

¢ML» | Ordershipmert Relafion «UML» | OrderShipment Relation

Xl » «UML»
OrderShipment OrderShipment
Relation Relation

Relation Mapping
A

[|1

XML e Shipment Mapping
Shipment |1 1

alUML »
Shipment

Figure 4. UML Representation of Relationship Mapping

What this example illustrates is the consequence of not
treating relationships (i.e. associations) as first-class citizens (i.e.
classes) in the representational language. This makes it
impossible to represent a relationship between relationships.
While UML does, indeed, have a common conceptual
abstraction between classes and associations that could play this
role (it is called the classifier), this concept is not instantiable
(representable). To represent a concept in UML you must make
an ontological commitment: it is either a class or an association
— or an association class.

This leads to the first representational principle:
Relationships must be first-class elements in the
representational language: It must be possible for a relationship
to relate any element to any element, including another
relationship.

B. Challenge 2: Types vs Instances

Another common ontological commitment requires
specifying whether a given element is a type or an instance of a
type. Fig. 5 illustrates the challenge of mapping the XML
customer representation into the corresponding UML
representation. While the XML Customer (a class) can be
associated with the UML Customer (also a class), UML provides
no mechanism for associating instances (the enumeration values
of the CustomerType) with classes: instances are at a different
meta-level than classes. Other than the generic UML
dependency (the dashed arrow used in the diagram), the only
supported UML relationship between classes and instances is the
instance relation, which is not appropriate here: The
INDIVIDUAL instance of CustomerType is not an instance of
the UML Individual class.

The problem here is that UML represents instances
differently than types (classes) and does not have a general

«x MLy «UL»
Customer Customer
wxXML» /_Ll;
-clstomerType, UL
«HMIL» = Individual
CustomerType -
enumeration lterals | - - «UML»
INDIVIDUAL % o — — — = 7 Ccompany
COMPANY o= — — § T

How can these mappings be
represented?

Mapping Instances (Enumeration Values) to Classes

Figure 5.

mechanism for modeling relationships between instances and
types.

A similar issue arises with elements at higher metalevels
(Fig. 6). In UML, classes (e.g. the XML Customer the UML
Customer) are instances of the metaclass Class that is part of the
UML specification. This relationship is not explicitly
representable, which makes it impossible to map the class-
metaclass relationship in one representation to a different kind
of relationship in another representation. Furthermore, UML
itself provides no mechanism for denoting relationships between
metalevels other than the generic dependency shown in Fig. 6.

Note also that XML Customer and UML Customer play the
role of the class (the type or category) in Fig. 5 while the same
elements play the role of instances in Fig. 6: the notions of type
and instance are relative to a meta-level, not absolute. In other
words, they are both relationships to meta-levels.

This leads to the second representational principle: A
representational element should be able to represent a concept
at any level of abstraction without making an ontological
commitment to the level of abstraction. Thus, the same element
can represent both a class and an instance of some other class.
More broadly, the notion of a meta-level is just a concept that
can be represented and the membership of a given element in a
given metalevel can also be explicitly represented as a
relationship within the model.

IV. REPRESENTATIONAL DESIDERATA

Before getting into the design of CRL, one thing needs to be
made perfectly clear: ontological commitments are useful. What
is needed is a representational language in which ontological
commitments are not forced by the representational language but
instead are explicitly represented within the language.

So, what does a representational language need to do?

1) Represent a discrete concept

2) Represent a reference to an existing representation

3) Represent the composition of representations to form
more complex representations

4) Not force any ontological commitment to any level of
abstraction

5) Represent that one representation is a refinement of
another representation

6) Represent relationships in such a way that relationships
can, themselves, be related

The notion of refinement subsumes the notions of both

generalization and instantiation since the representations being
related are uncommitted with respect to their level of abstraction.

«Metaclassy
Class How do we indicate that these are both

7 ~ linstances of the metaclass Class?
- =

& — T
N

/

ML
Customer

aUhL»
Customer

Figure 6. Elements at Different Meta-Levels

Both refinement and composition are relationships between
representational elements.

While these capabilities provide the ability to represent
arbitrarily complex concepts and relationships, the resulting
representations will contain much fine-grained detail that
generally comes into play only when detailing relationships.
Since such detail can be distracting to people, one more
requirement is added:

7) Enable simple (abbreviated) representations of full
representations when full explicit detail is not required. These
representations simply elide the display of the detail.

V. CRL CORE IDEAS

The first requirement for CRL is to be able to represent a
concept — any concept, at any level of abstraction. This is the
role of an Element (Fig. 7). Each Element has an identifier that
provides a unique identity (e.g. a GUID) for the concept being
represented. Of course, without further information it will be
unclear to a human reader which concept is being represented:
this is addressed later in the discussion of grounding.

The second requirement is to reference an existing concept.
The Reference serves this purpose — it represents the idea of a
reference. It has one attribute, the referencedElement, which
represents the actual value of the pointer to the Element being
referenced. The reference and the pointer value are distinct: the
reference retains its identity even if the pointer value changes.
Graphically, an arrow represents this pointer value. A Reference
is a refinement of an Element: every Reference is an Element.
Fig. 7 uses the UML Generalization notation to represent this
refinement. Refinement, as a representational concept, will be
discussed shortly.

The third representational requirement is composition. Some
concepts are complex, comprising a number of sub-concepts.
This composition is expressed through the Ownership relation:
ownedElements are a part of the owningElement. Here’s an
example.

A. Example: Representing an Association in CRL

Fig. 8 shows the CRL representation of the UML
OrderShipmentRelation from Fig. 2. The relation is represented
as a refinement of Element (indicated as <<Element>> using the
UML Stereotype notation to conserve space). The names in the
rectangles are just reminders of the concepts being represented
and are not part of the formal model. Each association end is
represented by a refinement of ElementReference, and each of
these is owned by (is a part of) the relation. Each owned

Refinement Ownership

0.1

-owningElement
-abstractElement| * 9

-ownedElements

Element

-refinedElement| attributes i
« |-identifier

Reference

CRL Core Ideas

-referencedElement

ReferencePointer

Figure 7.

Legend

«Element»
UML:OrderShipmentRelation

AN

«ElementReference» «ElementReference»
UML:OrderReference UML:ShipmentReference

El Association Elements

El Existing Representations

«Element»
UML:Shipment

«Element»
UML:Order

Figure 8. Representation of an Association

reference represents the role of the indicated concept with
respect to the association and the pointer arrow indicates the
concept being referenced. Associations with arbitrary cardinality
can be represented in this manner.

Fig 9 shows an instance of the UML:
OrderShipmentRelation. The element labeled <order 123 to
shipment 57> represents the instance as a refinement of the
UML:OrderShipmentRelation. Its <order 123Ref> instance is a
refinement of the UML:OrderReference. The referenced order,
<order 123>, is a refinement (an instance) of the concept
UML:Order.

Thus far, the concept of Refinement has been used without a
formal definition. The fifth representational requirement is the
ability to indicate that one representation is a refinement of
another more abstract representation. The CRL notion of
Refinement subsumes the ideas of both generalization and
instantiation. In Fig. 9 refinement (represented using the UML
Generalization notation) is being used to indicate traditional
instantiation (e.g. the relation between UML.:
OrderShipmentRelation and <order 123 to shipment 57>). If
explicit differentiation between generalization and instantiation
is desired, the Refinement concept can be further refined to
represent Generalization and Instantiation as concepts. Instances
(refinements) of these can, in turn, be used to represent the
generalizations and instantiations in the model.

Legend
D Definition

D Existing Representations

[instance

«Element»
UML:OrderShipmentRelation

N

«ElementReference». «ElementReference»
UML:OrderReference

/

«Element»
UML:Order

UML:ShipmentReference

N\

«Element»
UML:Shipment

«Element»

<order 123 to shipment 57>

N

«ElementReferences «ElementReference>|

<order 123 Ref>

4

«Element»

<shipment 57 Ref>

.

«Element»

<order 123> <shipment 57>

Figure 9. An Association Instance

VI. GROUNDING THE MODEL

Reducing CRL to practice presents some challenges,
beginning with the representation of Refinement. While
refinement could be represented in the same manner as the
association shown in Fig. 8, this example uses refinement: the
association is a refinement of Element, and each reference is a
refinement of ElementReference. This would make the
Refinement representation infinitely recursive. To break this
recursion and ground the model, Refinement is reified as a
distinct concept and modeled as a refinement of Element (Fig.
10). The reified Refinement has two pointer values indicating
the abstractElement and the refinedElement.

Another issue that arises in grounding the model is the need
to represent — and reference - values: pointers and literals. In
order for values to be referenced and participate in associations,
they must have identities. The BaseElement provides identity
and serves as a common abstraction between Element and
Value. The CRL Literal represents the literal value as a string.
The CRL Pointer represents the value of the pointer. Note that
with this change, Elements now own BaseElements, which
means they may own values as well as concepts.

The newly added BaseElement, Value, Pointer, and Literal
concepts also need to be referenced so that they can participate
in relationships. For this purpose, Pointer and Reference are
further refined to indicate the type of the pointer and reference.
Each of the refined pointers has an attribute indicating the object
(this is the actual pointer value), and each of the references has
a derived attribute indicating the relevant pointer. Note that, for
the purpose of mapping pointers, pointers to pointers are
introduced along with corresponding references.

Giving values explicit representations and providing
references to them allows the creation of associations in which
both values and elements can participate. The Fig. 5 relationship
between the XML “INDIVIDUAL” value and the UML
“Individual” class can now be represented. CRL can now
represent a relationship of anything to anything, satisfying
representational requirement six.

A. Attributes Derived from Ownership Relations

A number of derived attributes are shown in Fig 10:
following the UML convention, these are attributes with a slash
(/) in front of the name. For Elements and their refinements
these values are derived from the presence of specific
ownedElements. For example, the /literalPointer attribute of a
LiteralReference is an indirect way of indicating a LiteralPointer
that is an ownedBaseElement of the LiteralReference (Fig 11).
There is a constraint that, for these derived attributes, only one
instance of the indicated ownedElement is allowed. The
abstractElement, refinedElement, referencedElement, and
owningElement attributes are similarly derived: each is
indicated by the presence of an ElementPointer as an
ownedBaseElement with the Pointer’s elementPointerRole
indicating which attribute the pointer is intended to represent.

-/owningElement|0..1

-/abstractElement

-ownedBaseElements

BaseElement

Ownership

attributes
-identifier
-version

-/name

~furi

Element

-IrefinedElement

attributes
-/namelLiteralPointer : LiteralPointer

AbstractPginter
Refir

edPointer

]

-/uriLiteralPointer : LiteralPointer
-/uri : Literal
-/definition

-/definitionLiteralPointer : LiteralPointer

referencedElement

|

Value

attributes

=

i

ReferencePointer m

A

|

Literal

attributes
-literalvValue

[

[

BaseElementReference

attributes

lementPointer :

lementPointer

ElementReference

attributes
-/elementPointer : ElementPointer

ElementPointerReference

-/elementPointerPointer : ElementPointerPointer

attributes

BaseElementPointer

Li

attributes
-baseElement : BaseElement

teralPointerPointer

-literalPointer : LiteralPointer

attributes

ElementPointer

attributes
-element : Element

-elementPointerRole : ElementPointerRole

LiteralPointer

-literal : Literal

LiteralReference

attributes
-/literalPointer : LiteralPointer

«enumeration»
ElementPointerRole

enumeration literals

LiteralPointerReference

ABSTRACT_ELEMENT
REFINED_ELEMENT

attributes

-/literalPointerPointer : LiteralPointerPointer

OWNING_ELEMENT
REFERENCED_ELEMENT

Figure 10. Grounded Model

-literalPointerRole : LiteralPointerRole

attributes

ElementPointerPointer

attributes

-elementPointer : ElementPointer

«enumeration»
LiteralPointerRole

VALUE

enumeration literals
NAME
DEFINITION
URI

B. Aiding Human Understanding

As mentioned previously, concepts identified only by the
Element’s identifier are not going to be recognizable by human
readers. For this reason, the optional derived attribute /name is
added to the model. The actual value of the name is derived from
the structural pattern shown in Fig. 12. Providing a name for
element J involves adding a LiteralPointer to J’s
ownedBaseElements with the literalPointerRole = “NAME”.
The literal indicated by this pointer contains the actual name. By
convention, this literal would also an ownedBaseElement of J,
but this is not a requirement of the model. The reason for
providing this structure is to facilitate the representation of
mappings involving the name and the pointer to the name (i.e.
the value of the pointer). It is important to note that this name is
not intended to model the potentially complex semantic
relationship between names and concepts: its provided simply as
an aid to human understanding in identifying the concept being

«LiteralReference»

-literalPointer|

«LiteralPointer>|

\L Legend
I:' LiteralReference Structure

«Literal» o .
El Existing Literal

Figure 11. LiteralReference Structure

represented. In contrast with Elements and Literals, whose
names are assignable, the names of Pointers are constants built
into the model.

In similar fashion, definitions and URIs can be optionally
added to the model. Definitions provide a facility for deeper
human understanding of the concept being represented, while
URIs provide a mechanism for identifying individual concepts
without having to know the system-generated identifier.

VII. EXAMPLES

A. Modeling Sets
The concept of a Set (Fig. 13) is represented by an Element.

Each member of the set s represented as a

«Element»
Element J
attributes
-Iname

-namelLiteralPointe

«LiteralPointer» «Literal»

Name Pointer Name

attributes attributes
-literalPointerRole = "NAME" -literalValue = "J"

-literal

Structure for Providing Element Names

Figure 12.

Legend
[Definition

Iﬁ |:| Existing Reprasentations

Add unigueness constraint for set
members

«Elements «BaseElementReferences «BaseBlements
| Set SetMember BaseElement

«Elaments
PeopleSet

[Instance

«ElementReferences
PeopleSetMember

«Elements
Person

«Elements
Paul C. Brown

Representations of Sets

Figure 13.

BaseElementReference, which can point to any BaseElement.
Sets can be refined to indicate the type of element that is allowed
in the set. In the figure, a PeopleSet uses PeopleSetMember
references to indicate that the member is a Person. PeopleSet is
a refinement of Set, PeopleSetMember is a refinement of
SetMember, and Person is an Element which, by definition, is a
refinement of BaseElement.

An instance of a PeopleSet might be the
AuthorsOfThisPaperSet, which is a refinement of PeopleSet.
The member references are refinements of PeopleSetMember,
and the members must all be refinements of Person.

B. Modeling a Mapping

An everyday challenge in IT is the transformation of one data
structure into another, often with different representations of
relationships. A common requirement is to map the hierarchical
structure of XML to a peer-to-peer structure.

The example of Fig. 2 shows an XML structure and a
corresponding UML structure. The mappings between Orders
and between Shipments in the two representations is
straightforward: each is a simple 1:1 mapping (Fig. 14). The
mapping of the OrderShipmentRelation is more complicated.
Because of the hierarchical structure of XML, the XML
representation of the relationship can be simply modeled as a
collection of ElementReferences belonging to the XML.:Order,
each referencing an associated XML Shipment. The UML
representation is more complicated. Because it is a peer-to-peer

«Element»
OrderMap

Pt

Legend
[customer Mapping

«Element»
CustomerMap
Y [individual Mapping

|
I:l Company Mapping
XMLCustomerRef | N
D Existing Objects

«Element»
Individual Map «Element»
UML:Customer
Z
«ElementReference» «Element»
UMLIndividualMap UML:Individual

ce
XML IndividualRef)‘

UMLCustomerRef |

«Element»
XML:Customer

«ElementReference»
XML:CustomerTypeRef

«Element»

«Element»

«Element»
CompanyMap

«ElementReference»
UMLCompanyRef

XML:CustomerType

«Element»
XML:INDIVIDUAL

«Element»
XML:COMPANY

UML:Company

ce

XMLCompanyRef

Figure 15. Customer Mapping
association, the UML representation comprises the
UML.:OrderShipmentRelation and two owned

ElementReferences, one to the UML:Order and the other to the
UML.:Shipment. The RelationMap thus maps a single object on
the XML side (the XML:Shipments) to a structure on the UML
side (the UML.:OrderShipmentRelation and its two element
references). Each instance of the XML:Shipments corresponds
to an instance of the UML.:OrderShipmentRelation structure.

The mapping of Customer is also complex (Fig. 15).
Although the top-level correspondence of Customer is simple,
the XML indication of customer type involves a reference to a
CustomerType enumeration value while the UML
representation utilizes different classes. Consequently, the
CustomerMap utilizes two subordinate maps, the IndividualMap
and the CompanyMap, that show the correspondence between
the XML CustomerType values and the classes used by the
UML representation.

VIIl. RELATED WORK

Most work on representations is either confined to a specific
domain or addresses mappings between domains. Two of the
most widely used representations within domains are UML [4],
which is focused on engineering designs, and RDF [1], which is
focused on information representation on the web. XSLT [11] is
a widely used language designed to model the transformation
(mapping) of XML documents into other XML documents.

«Element»
UML:OrderShipmentRelation

Legend
D Order Mapping
D Shipment Mapping
D OrderShipmentRelation Mapping|

«ElementReference» | «ElementReferences»
XMLOrderRef UMLOrderRef

«Element»
UML:Order

«ElementReference»
UML:OrderReference

D Existing Objects

\l/ «ElementReferences «ElementReference» «Element»
«Element» UMLOrderReferenceRef UML:ShipmentReference UML:Shipment
XML:Order
«Element>»
PP, «ElementReference»
elationMa
' 2 UMLRelationRef
«ElementReference» «ElementReference» «ElementReference»
. i «Element»)
XML:Shipments XMLRelationRef) UMLShipmentReferenceRef
ShipmentMap
il I

«Element»
XML:Shipment

XMLShipmentRef

«ElementReference»

«ElementReference»
UMLShipmentRef

Figure 14. OrderShipmentRelation Mapping

The most closely related work is that of Medhavan et al. [17]
which explores mappings between domain models. The
challenges they identify relate with those discussed herein: “The
first issue ... is that we need to specify a mapping between
models in different representation languages. The second issue
is that not all concepts in one model exist directly in the other.”
However, their approach to heterogeneity differs. “By nature,
mappings will involve multiple representation languages.
Therefore, a mapping language needs to be able to represent
mappings between models in different languages. An alternative
approach would be to first translate all the models into a
common representation language, and then specify mappings as
formulas in this language. However, it is often desirable to avoid
the problems associated with designing a single representation
language for all models...” They choose to pursue the multi-
representational method, while the CRL work explores the
common representation language approach.

IX. CURRENT STATUS AND PLANNED WORK

CRL was originally designed to represent data structures and
the mappings between them. It is conjectured that CRL has an
isomorphic representation of any data structure comprising
discreet entities and discrete relationships. One current research
objective is to prove or disprove this conjecture.

While developing CRL it became apparent that it can also be
used to represent functions and programs. Thus, CRL can
provide a uniform representation for both programs and the data
upon which they operate. Furthermore, it was recognized that,
by associating code fragments with individual function
representations, these function representations can be made
executable.

An initial implementation of CRL was done in Java.
However, the threading model and transactional semantics of
Java turned out to be suboptimal for the desired execution
model. A new implementation was created in the Go
programming language. This implementation is named
ActiveCRL to reflect its support for executable representations.
The present implementation provides the representational
infrastructure with serialization/deserialization, and an optional
undo-redo capability for all changes. It has the infrastructure to
associate Go functions with CRL Elements representing
functions and to automatically trigger the execution of those
functions when changes are made to their associated
representation structure. Altering the CRL structures
automatically triggers reevaluation of the functions.

At present, all of the functions needed to manipulate the CRL
representations have been implemented in Go and associated
with corresponding CRL Elements. The stage is set for creating
representations of programs that manipulate CRL
representations and making them executable. The intent is to
create an interactive graphical editor for CRL with all
functionality except the device-specific graphic rendering being
provided by executable CRL representations. ActiveCRL is very
much a work in progress. The current version can be found at
https://github.com/pbrown12303/activeCRL.

While CRL provides many capabilities, it is not a panacea
for multi-domain computing. Its representations are fine-grained

and require more computational resources than specialized
representations. On the other hand, CRL representations can be
continuously extended to include new domains without
modifying the representational scheme. This means that new
domains and mappings can be added at runtime. The aim of
current work is to establish the practicality of CRL for both
passive representations and active executions.

REFERENCES

[1] W3C, "RDF 1.1 Concepts and Abstract Syntax," World Wide Web
Consortium, 2014.

[2] OWL Working Group, "OWL Web Ontology Language,” W3C, 11
December 2012. [Online]. Awvailable: https://www.w3.0rg/OWL/.
[Accessed 26 December 2017].

[3] Object Management Group, “"Semantics of Business Vocabulary and
BusinessRules Version 1.4," 1 May 2017. [Online]. Available:
http://www.omg.org/spec/SBVR/1.4/PDF. [Accessed 26 December
2017].

[4] OMG, "OMG Unified Modeling Language TM (OMG UML) Version
2.5," Object Management Group, 2015.

[5] Object Management Group, "OMG Systems Modeling Language
Version 15" 1 May 2017. [Online]. Awvailable:
http://www.omg.org/spec/SysML/1.5/PDF. [Accessed 26 December
2017].

[6] F. Castanedo, "A Review of Data Fusion Techniques," The Scientific
World Journal, Vols. 2013, Article ID 704504, 19 pages, 2013.

[7] D. Lahat, T. Adali and C. Jutten, "Multimodal Data Fusion: An Overview
of Methods, Challenges, and Prospects,” Proceedings of the IEEE, vol.
103, no. 9, pp. 1449 - 1477, 2015.

[8] NDIA Model Based Engineering Subcommittee, "Final Report of the
Model Based Engineering (MBE) Subcommittee,” National Defense
Industrial Association, 2011.

[9] W. Piers, M. Barbero, F. Allialaire, T. Fortin, F. Jouault and H.
Bruneliere, "ATL/Developer Guide," 31 August 2012. [Online].
Auvailable: http://wiki.eclipse.org/ATL/Developer_Guide. [Accessed 26
December 2017].

[10] Object Management Group, "Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0," 1 April 2008.
[Online]. Available: http://www.omg.org/spec/QVT/1.0/PDF. [Accessed
26 December 2017].

[11] W3C, "XSL Transformations (XSLT) Version 1.0," World Wide Web
Consortium, 1999.

[12] Object Management Group, "Semantic Information Modeling for
Federation (SIMF) Request for Proposal," OMG Document: ad/2011-12-
10, Needham, MA, 2011.

[13] W3C, "Extensible Markup Language (XML) 1.0 (Fifth Edition)," World
Wide Web Consortium, 2008.

[14] W3C, "W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures," World Wide Web Consortium, 2012.

[15] J. F. Sowa, Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Pacific Grove, Ca: Brooks/Cole, 2000.

[16] G. Guizzardi, Ontological Foundations for Structural Conceptual
Models, Enschede, The Netherlands: CTIT PhD Thesis Series, 2005.

[17] J. Madhavan, P. A. Bernstein, P. Domingos and A. Y. Halevy,
"Representing and reasoning about mappings between domain models,"
in Eighteenth national conference on Artificial intelligence, Edmonton,
Alberta, Canada, 2002.

