
Revised 1/28/99

Constructive Semantics

by

Paul Cameron Brown

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Rensselaer Polytechnic Institute

Troy,New York

May 1992

Mukkai S. Krishnamoorthy, Thesis AdvisorDavid R. Musser, Thesis Advisor

David L. Spooner, Member Edward H. Rogers, Member

Philip M. Lewis, Member Kim B. Bruce, Member

Page ii Revised 1/28/99

 Copyright 1992

By

Paul C. Brown

All Rights Reserved

Page iii Revised 1/28/99

Contents

List of Figures vii
Acknowledgments viii
Abstract x

1.0 Introduction and Historical Review 1
1.1 Current Approaches to Semantics 2

1.1.1 Denotational Semantics 2
1.1.2 Algebraic Semantics 4
1.1.3 Axiomatic Semantics 4
1.1.4 Operational Semantics 5

1.2 Contributions 6
1.3 Thesis Outline 9

2.0 State Machines and Machine Types 14
2.1 Algebra of States and Transitions: HCCS 14

2.1.1 Actions 15
2.1.2 Machines 17
2.1.3 Agent Expressions 19
2.1.4 Transition Rules 22
2.1.5 Determining the Sort of a Machine 26
2.1.6 Constructing a Labeled Transition System from Equations 27
2.1.7 Labeled Transition System Examples 27
2.1.8 Interactions Between Machines 28

2.2 Equivalence 30
2.2.1 Behavioral Equivalence 33
2.2.2 Equivalence of Generic Machines and Agent Expressions 34

2.3 Additional Machine Properties and Constraints 35
2.3.1 Input and Output Actions 36
2.3.2 Atomic Actions Appear on Exactly One Machine 37
2.3.3 Activate and Idle Actions 37

2.4 Orthogonality 38
2.5 Types 39

2.5.1 State Types 40
2.5.2 Abstract Types 42
2.5.3 Extensionality and Types 43

2.6 Petri Net Extensions 44
2.6.1 Reduced Petri Nets 45

3.0 Classes of Machines 48
3.1 Value Machines 48

3.1.1 Value Machines are Mutually Orthogonal 50
3.1.2 Value Machine Activation and Idling 50

Page iv Revised 1/28/99

3.1.3 Constants 53
3.2 Interaction Machines 54

3.2.1 Interaction Machines Model Primitive Operations 56
3.3 Activation Machines 57
3.4 Machine Algebra 61
3.5 A simple example 62

3.5.1 Parallelization Theorem 63
3.5.2 Change of Scope Theorem 66

4.0 Visibility 68
4.1 Declarations and References 69
4.2 Homographs and Overload Resolution 70
4.3 Environments and the Masking Union 75
4.4 Basic Visibility Computations 77

4.4.1 Compilation Diagnostic Aids 79
4.5 Visibility and the Ordering of Declarations 80

4.5.1 Letrec (Let Recursive) Visibility Semantics 80
4.5.2 Let Visibility Semantics 81
4.5.3 Let* Visibility Semantics 82

4.6 Visibility Within a Declaration 84
4.6.1 Let* Semantics 84
4.6.2 Compilation Diagnostic Aids 86
4.6.3 Letrec semantics - Fully Recursive Referencing 86
4.6.4 Let semantics - Non-recursive referencing 87

4.7 Ada Declarative Region Visibility (partial) 87
4.8 Referencing Declarations from Other Scopes 87

5.0 Applying Constructive Semantics 93
5.1 Elaboration: From Programs to Machines 93
5.2 Concepts of Type 94

5.2.1 Simple Data Types 96
5.2.2 Types with Structure 96

5.3 Supporting Data Structures and Functions 97
5.3.1 Environments 97
5.3.2 State Types 98
5.3.3 Abstract Types 98
5.3.4 Signatures of Subprograms 98
5.3.5 Type Structure 99
5.3.6 Finding the Type of a Machine 99
5.3.7 Finding the Argument Signature of a Machine 99
5.3.8 Finding the Return Signature of a Machine 100
5.3.9 Finding the Signature of a Machine 100
5.3.10 References 100

Page v Revised 1/28/99

5.3.11 Getting New Machines of a Type 101
5.4 Elaboration: Formal Definition 101
5.5 Basic Data Types and Operations 102
5.6 Variables 102

5.6.1 Variables of a Simple Type 103
5.7 Pointers 103
5.8 Statements 105

5.8.1 Subprogram Calls and Expression Evaluation 106
5.8.2 Go-To 109
5.8.3 Raising an Exception 113
5.8.4 Loop 114

5.9 Declarative Blocks 116
5.9.1 Declarative Part 117
5.9.2 Sequence of Statements 119
5.9.3 Mixing Declarations and Statements 119

5.10 Complex Data Types 120
5.10.1 Simple Record 120
5.10.2 Arrays 121
5.10.3 Accessing Arrays 122

5.11 Programs and Subprograms 123
5.11.1 Call By Value and Result 124
5.11.2 Call by Reference 126

6.0 Discussion and Conclusions 128
6.1 Topics for Future Work 129

6.1.1 Abort Actions 129
6.1.2 Modeling More Complex Type Structures 129
6.1.3 Ada Packages, Tasks and Generics 130
6.1.4 Overload Resolution 130
6.1.5 Divergence 131

6.2 Benefits of Constructive Semantics 131

A HCCS 133
A.1 Actions 134
A.2 Synchronization Tree Semantics 135
A.3 Agent Expressions and Agents 137
A.4 Semantics of Agent Expressions 141
A.5 Labeled Transition Systems 143
A.6 Sorts of Agents 147
A.7 Failures Equivalence 148
A.8 Equational Properties 153

Page vi

Revised 1/28/99

B Machine Algebra 154
B.1 Parallelization Theorem 160
B.2 Proof for Change of Scope Theorem 168

C Masking Union Properties and Visibility Proofs 169
C.1 Masking Union Properties 169

Page vii Revised 1/28/99

List of Figures

Figure 1 Simple State Machine 28
Figure 2 Interacting State Machines 29
Figure 3 Trace Equivalent Machines 31
Figure 4 Machines Distinguished by Strong Equivalence 32
Figure 5 Machines Distinguished by Observational Equivalence 32
Figure 6 Four Isomorphic Machines 41
Figure 7 Behaviorally Equivalent Machine for Machine B 43
Figure 8 Eaker’s Extensions to Petri Nets 45
Figure 9 Extended Petri Net Showing the Composition A|B 46
Figure 10 Reduced Petri Net Showing the Composition A|B 47
Figure 11 Incomplete Value Machine for 3-valued Variable 50
Figure 12 Complete Value Machine for 3-valued Variable 51
Figure 13 Reduced Petri Net Fragment Showing a Variable of Type V 52
Figure 14 Value Machine for Constant “1” 53
Figure 15 Reduced Petri Net Fragment Showing a Constant of Type V 53
Figure 16 Assignment Machine =j→k 55
Figure 17 Typed Petri Net Showing an Assignment Machine =j→k 56
Figure 18 Activation Machine A i→j 58
Figure 19 Reduced Petri Net Fragment for Composition Mi | Ai→j | Mj 59
Figure 20 Activation Machine A i→jk 60
Figure 21 Partial Typed Petri Net of Composition Mi; 〈Mj | Mk〉 ; Ml 61
Figure 22 Reduced Petri Net of Example 1 64

Page viii Revised 1/28/99

Acknowledgments

It is difficult to know where to begin in acknowledging the people who have contributed,

directly or indirectly, to this work. I suppose that an appropriate place to begin is with the

teachers who have encouraged and inspired me to go beyond rote learning in a very funda-

mental way and delight in truly understanding things: Richard Kimball, Cornelius Banta,

Dick Russ and Bill Stone. My thanks also to those who were my guides as I began to un-

derstand this new and exciting field of computer science: Mukkai “Moorthy” Krishnamoor-

thy, Dave Spooner, Deepak Kapur, Bob McNaughton, Sam Kim and Erich Kaltofen.

In exploring a field, there comes a point when one begins to ask questions for which the

answers are not readily found, and one begins to experiment with new ideas as a means of

arriving at the answers to these elusive questions. These initial steps toward research are

tenuous at best: ideas frequently turn out not to be new at all, and those that are new require

enormous effort to develop into clearly defined concepts that can be communicated and

used.

It is the difficult task of the advisor to guide the emerging researcher through this troubling

period. My first advisor was David Spooner, who helped me through the first tentative steps

back when I was completing my Master’s Degree. As my interest shifted toward semantics,

“Moorthy” Krishnamoorthy became my advisor for my doctoral work, and was later joined

by Dave Musser as the work expanded to encompass the Ada programming language. Dan

Rosenkrantz and Phil Lewis have also helped me through this process of learning to do re-

search. I have much to thank these people for: the freedom to both define the problem area

and carve out the approach to the solution; the hours that they spent listening patiently to

half-developed ideas as I tried to understand them myself; and perhaps most of all, for not

discouraging me by pointing out the magnitude of the task that I had set out for myself.

Page ix Revised 1/28/99

A special thanks to Robin Milner, whose work has laid the foundation for this thesis, for

helping me understand why I had been unable to prove the parallelization theorem using

ASCCS and observational equivalence, and to Phil Lewis, who first pointed out Milner’s

work to me and kept me from re-inventing a rather large wheel.

This thesis was inspired by some work that I did on a project at GE’s Corporate Research

and Development Center developing an experimental incremental compiler and develop-

ment environment for the Ada programming language. During the course of that project I

conceived many of the ideas central to this thesis, although it has taken me a long time to

evolve them into the form in which they presently appear. My thanks go to Phil Lewis and

Joel Sturman for the opportunity to work on the semantic model for that project, and to

Dave Oliver and Art Chen for their continuing support as the project dragged on. Jim Guil-

ford, Tim Kelliher and Alyce Stewart struggled through applying the partially developed

ideas in the incremental compiler, and provided valuable feedback that helped the model

evolve, while John Hutchison provided a running sanity check on my understanding of

Ada.

This work has not come without a price. My wife, Maria, has been waiting patiently for 16

years as I have worked my way through three degrees while also working full time. During

that time she has tirelessly done many of the things that I should have been doing myself

so that I could have the time to study. Without her continuing love and support, this work

would never have been accomplished. My daughter Jessica, now in High School, has grown

up watching me study all the time. My son Philip, now in first grade, has been counting the

days until this thesis was completed so that we might play. Well the waiting is over...it’s

playtime!

Page x Revised 1/28/99

Abstract

Constructive Semantics is an approach to programming language semantics that treats a

program as a constructive specification for an abstract state machine. This abstract machine

is composed of a set of smaller “well-behaved” machines operating concurrently. The exact

combination of machines is determined by the program, with each programming language

construct appearing in the program defining a portion of the composition. The program-

ming language itself specifies a number of primitive machines that form the basic building

blocks of programs. These machines represent the basic operations and data types of the

language. The resulting semantics is relatively easy to understand, an its relationship to the

original program is clear.

Constructive semantics treats many higher level programming language abstractions also

as specifications of state machines, where these machines serve as prototypes for entire sets

of machines. For example, a basic data type in a programming language is modeled as a

state machine, and each variable of the type is modeled as a copy of this machine. Behav-

ioral equivalence of machines provides a basis for modeling abstract data types, in which

behaviorally equivalent machines belong to the same abstract data type. Behavioral equiv-

alence also provides a basis for modeling type hierarchies such as those found in object-

oriented languages with multiple inheritance.

Ada generics and C++ templates are modeled as partial specifications of state machines.

These partial specifications contain variables corresponding to the formal parameters of the

generic or template. The expected values for these variables are state machines. An instan-

tiation of the generic or template is modeled as the state machine defined by replacing each

variable with the state machine corresponding to the actual parameter (usually the proto-

type machine associated with a type or subprogram).

Page xi

Revised 1/28/99

Constructive semantics provides straightforward semantic models for other important as-

pects of programming languages, including concurrency (Ada tasks), elaboration and visi-

bility computations. Several theorems in constructive semantics describe orthogonality (in-

dependence) conditions under which the serial/parallel relationships between machines in

a composition may be modified without affecting observable behavior. The formalism un-

derlying constructive semantics is derived from the well-studied models of Milner’s Cal-

culus of Communicating Systems (CCS) and Hoare’s Communicating Sequential Process-

es (CSP). Behavioral equivalence in constructive semantics is based upon Hoare’s concept

of failures equivalence.

Page 1 Revised 1/28/99

1.0 Introduction and Historical Review

Semantics is “The relation between signs or symbols and what they signify or denote.1” For

most programming languages, the rules for identifying the signs and symbols (the lexical

elements of the language) are well defined and easily understood, as are the rules for defin-

ing the legal structures of these elements (the syntax). Less well defined are the concepts

that are denoted by the elements of the language and the relationship between the symbols

and the concepts. These concepts, and the relationship that they bear to the symbols of the

language, are the subject of this thesis.

To set the stage for this work, we must ask two questions: What is the purpose of seman-

tics? and Who are the intended users of semantics? Presumably the intent of semantics is

to describe the meaning of a program in a way that is, in some sense, more understandable

than the program itself. The driver for increased understanding may be the need for more

precision (finer detail), or the need to better define an abstract concept (“...just what is a

type, anyway?”) In either case, the semantic model must be understandable to be of prac-

tical value.

Who are the intended users of semantics? Ultimately, we would like the audience to be the

body of language designers, complier and interpreter writers, and software engineers that

will work with the language whose semantics is being defined. This places great demands

upon the semantics. Providing an elegant mathematical model in category theory, for ex-

ample, is not going to help the average software engineer understand the language better.

On the other hand, describing semantics with readily understood but somewhat informal

models is not going to provide the precision necessary to illuminate the nooks and crannies

of the language and clarify what otherwise might be ambiguities.

1. Funk & Wagnalls Standard Dictionary of the English Language, International Edition (1962)

Page 2

Revised 1/28/99

1.1 Current Approaches to Semantics

There are four primary approaches to semantics commonly found in the literature today,

differing mainly in the abstractions that they use to model a program. Denotational seman-

tics takes a functional approach, translating program elements into lambda calculus expres-

sions, and thus into the abstract mathematical domains of values and functions. Algebraic

semantics is similar to denotational semantics, but translates programs into abstract alge-

bras instead of the lambda calculus. Axiomatic semantics has a slightly different flavor, giv-

ing assertions about the behavior of program elements in axiomatic form. Operational se-

mantics maps programs onto the behavior of some abstract machine.

To date, none of these approaches has yet yielded (to the best of our knowledge) a complete

semantics for a strongly typed production programming language. Even those that have

been partially completed are difficult to understand [Modu88][Bjor80]. We believe that

this lack of success does not necessarily indicate that the models being used are fundamen-

tally inappropriate for the task at hand. We believe that the real problem is that a higher

level of abstraction, which is in turn built upon one or more of these models, is necessary

to bridge the gap between the model and the programming language and clarify the rela-

tionship between the program and the model. Before expanding upon this concept, let us

briefly examine the four popular models.

1.1.1 Denotational Semantics

Denotational semantics translates program elements into lambda calculus expressions, thus

describing the meaning of the program in terms of the abstract mathematical domains of

values and mappings (functions) between the values [Scot76][Scot82][Stoy77]. Semantics

for more elaborate languages treat types and functions themselves as values in this domain,

Page 3

Revised 1/28/99

and add appropriate mappings to represent parameterized types and functions [Amad86]

[Bruc80][Bruc84][McCr82][Mitc84].

Since the denotational model is functional in nature, the resulting semantic expressions typ-

ically take two fairly complex values as arguments and return these as secondary values

(possibly in modified form) along with the primary value being returned from the expres-

sion. These complex values are the state of the “memory” or store, and “the rest of the pro-

gram” or continuation. In general, a semantic expression may use and/or modify both the

store and the continuation in the process of computing the value that it returns.

This passing of the store and continuation through virtually all semantic expressions makes

it difficult to understand the scope of effect of changes in these variables. While it may be

obvious from a local examination of a particular semantic expression whether it uses and/

or modifies the store, it is not obvious from a local examination whether the rest of the pro-

gram will use or modify these same values. Since there is no explicit indication of the pos-

sible interactions between any two semantic expressions, the effect of each expression upon

the rest of the program is only partially specified by the expression itself. Assessing the rel-

ative dependence or independence of semantic expressions thus requires an analysis of the

expression continuations and stores at every point in the program where the expressions in

question are used.

Unfortunately, software engineers do not normally think of the modules of a program as

pure functions. In fact, programmers tend to view modules as machines with state that re-

spond to inputs by changing state and/or producing outputs. It is our belief that denotation-

al semantics has not been a more successful vehicle for communicating the semantics of

programming languages precisely because information concerning the scope of effect of

Page 4

Revised 1/28/99

state changes and the possible interactions between semantic model elements is difficult to

extract from the model.

1.1.2 Algebraic Semantics

Algebraic semantics [Broy87][Gogu77][Moss83][Moss84], like denotational semantics,

seeks to map programs onto mathematical domains, with the distinction that in algebraic

semantics multiple domains (algebras) are being used. Frequently the program itself is in-

terpreted as defining and then using one or more algebras. Unfortunately, algebraic seman-

tics, like denotational semantics, has a difficult time representing state. Variables, for ex-

ample, are represented as constants in an algebra characterizing the data type. Changing the

value of the variable creates a new algebra that is identical to the previous algebra except

for the value associated with the constant. As with denotational semantics, we believe that

this will limit the usefulness of algebraic semantics as a communications medium between

language designers, compiler writers and software engineers.

1.1.3 Axiomatic Semantics

Axiomatic semantics [Hoar69][Mann74][Ende73][Mend87] brings the power of mathe-

matical logic to bear upon programs and programming languages. Unlike the other seman-

tic approaches, axiomatic semantics is not constructive, which requires the user of the se-

mantics to view the program from a slightly different perspective.

Axiomatic semantics characterizes a program or program element by constraint: each axi-

om specifies some relationship that the program must be faithful to. In using axiomatic se-

mantics, one is continually faced with the question of sufficiency with respect to the set of

axioms provided. If the desire is simply to specify some minimum set of properties that a

program or element must meet, then any consistent set of axioms is sufficient. If, on the

Page 5

Revised 1/28/99

other hand, the desire is to completely specify a program to the extent that any two pro-

grams that are consistent with the axioms are guaranteed to behave in exactly the same

manner under all circumstances, then a notion of equivalence is required. We suggest that

Hoare’s failures equivalence,1 which we shall also take as our notion of behavioral equiv-

alence in this work, offers a good definition of equivalence for this purpose, and also pro-

vides a basis upon which to determine whether a given set of axioms is complete. Further-

more, as we shall see in the thesis itself, the notion of abstract type that we will develop is

also based upon this equivalence, thus providing a formal link between our model and this

stronger form of axiomatic semantics.

1.1.4 Operational Semantics

Operational semantics models a program by mapping program elements onto the opera-

tions of an abstract machine, thus defining the behavior of the program in terms of the be-

havior of this abstract machine. In early operational semantics, this machine was often a

relatively simple abstract computational engine whose behavior was defined by a set of

rules.The selection of a particular abstract machine to be used as the basis for the semantics

was frequently motivated as much by the availability of a well understood abstract machine

as it was by considering the appropriateness of the abstract machine for modeling a partic-

ular language. Although this early form of operational semantics provided an explicit mod-

el for the notion of program state, the mapping from the state of higher level programming

abstractions onto the state of the an abstract machine (like a stack machine) was often com-

plex, thus limiting the understandability of such models. Additionally, it has been unclear

how to model higher level program abstractions such as data types in operational semantics.

1. [Hoar85] p. 130, axioms C0-C3. Axioms C4-C6 extend failures equivalence to consider diver-
gence (infinite computations) as well. We have left the issue of divergence open in this work.

Page 6

Revised 1/28/99

More recently, operational semantics has taken a theoretical turn. Milner

[Miln80][Miln83][Miln89] and Hoare [Hoar85] have both proposed calculi for defining ab-

stract machines with well understood properties and operators. With this capability in hand,

one can now entertain the thought of customizing the abstract machine to suit the language.

In this thesis we will carry this thought through to its logical conclusion: the program itself

will be interpreted as the definition of an abstract machine. Milner1 has explored some of

the possibilities in this area, using CCS to model a simple imperative language with con-

currently executing subprograms and shared variables. This work left open the question of

how to model call-by-reference in subprogram calls, and did not address at all the area of

types and type checking.

1.2 Contributions

We take a constructive approach to semantics in which the entire program is considered to

be the definition of an abstract state machine and its initial state. We call this approach con-

structive semantics. We have carried the earlier work of Milner2 forward into a more gen-

eral formulation capable of modeling types, type hierarchies, type checking, visibility com-

putations and overload resolution.

To give a formalism to our semantics, we define a language for specifying state machines

that we call a Hybrid Calculus of Communicating Systems (HCCS), since it borrows

heavily from Milner’s CCS and Hoare’s CSP. We show that Hoare’s failures equivalence

is a congruence relation in this calculus, and define this to be our notion of behavioral

equivalence.

1. [Miln89] pp. 170-185.
2. Ibid.

Page 7

Revised 1/28/99

We define state types to be constructively specified sets of isomorphic state machines, and

abstract types to be constructively specified sets of behaviorally equivalent machines. This

behavioral equivalence then defines a partial ordering on types, and provides a formal basis

for type hierarchies and the more complex type schemes of multiple inheritance. We define

generic types to be parameterized specifications for state types, where the parameters are,

themselves, other state machines.

Rather than translating a program directly into HCCS, we define an intermediate language

that we call a Machine Algebra. This offers considerable notational simplification over

HCCS, since a single term in the machine algebra corresponds to both a term and a set of

defining equations in HCCS. We show that by restricting the use of HCCS in defining ma-

chines, we can create a class of well-behaved machines whose starting and stopping behav-

ior is well defined. We show that this property is preserved by the combinators of our ma-

chine algebra. We also show how restricting the use of some actions to guarantee that they

only appear on one machine can be used to structure entire classes of machines that are, by

construction, independent of one another. We define the orthogonality relation of machines

that cannot interact with each other.

The usefulness of our machine algebra approach is demonstrated through two theorems, the

parallelization theorem and the change of scope theorem, each stating a set of orthogonal-

ity conditions under which a change in the serial/parallel relationships between machines

in a machine algebra expression may be altered without affecting the observable behavior

of the state algebra expression.

We review the notion of visibility in programming languages. We provide a formal defini-

tion of the notion of homograph, and propose a modified set union operation that we call

a masking union for use as a fundamental operation in defining the visibility of program

Page 8

Revised 1/28/99

elements. We demonstrate the use of the masking union in modeling a wide variety of dif-

ferent visibility semantics.

Finally, we show how to use machine algebra and HCCS to give the constructive semantics

for a programming language. We give a formal definition of elaboration as the process of

converting a program into a state machine. We reconcile three seemingly disparate notions

of type, giving a common model based on state types. We show that programs, subpro-

grams and type declarations all define state types, thus providing a very general and uni-

form model for these apparently disparate concepts. We show that the elaboration of a vari-

able declaration and the calling of a subprogram both cause instances of the state type to be

created. We demonstrate, in a limited form, the use of generic machines.

Our model has a number of advantages over other semantic approaches. First, it is com-

pletely language independent, and thus provides a precise neutral ground for comparing

and contrasting languages and language features. Second, while we do not have a normal

form for expressions, we claim that our semantics is fully abstract in the sense that the

equivalence classes of semantic expressions under behavioral equivalence are the fully ab-

stracted semantics. Third, our semantics provides a uniform treatment of subprogram calls

regardless of whether the subprogram is a function or a procedure, and regardless of wheth-

er the call occurs as a statement or as part of an expression. Finally, our semantics provides

a domain for constructing accurate models of implementation strategies and formally com-

paring them (via behavioral equivalence) to an abstract semantics of a language, with the

added advantage that these comparisons can be meaningfully carried out on fragments of

the language.

Page 9

Revised 1/28/99

1.3 Thesis Outline

Chapter 2 lays the groundwork for our semantics. In this chapter we define HCCS, a lan-

guage of states and transitions used for describing state transition systems, which we will

use as means of defining state machines. We explore the mechanism for interaction be-

tween state machines via the actions of the machines. We define a behavioral equivalence

between machines, and show that this equivalence is a congruence relation in HCCS. We

define the orthogonality of two machines to be the inability of the machines to interact with

each other. We define state types to be sets of state machines that are isomorphic under an

operator mapping the actions of one machine onto the actions of another machine. We de-

fine abstract types to be sets of machines that are behaviorally equivalent under a similar

mapping. Finally, we introduce reduced Petri nets as a convenient means of illustrating in-

teractions between machines.

HCCS is capable of defining a very broad class of machine, much broader than we wish to

use in our semantics. In chapter 3 we turn to defining the constraints that we will impose

upon the machines that are definable in constructive semantics, and raise our level of ab-

straction, focusing on entire machines and their relationships with one another. We define

well-behaved machines to be machines with well defined initialization and termination

properties.We define a machine algebra, a notation for describing the serial/parallel rela-

tionships between machines. This algebra will form the notational basis for our semantics.

We define several basic classes of machines: value machines, which are mutually orthog-

onal machines intended to store values; interaction machines transfer values between ma-

chines, possibly computing values in the process; and activation machines serve to coordi-

nate the starting and stopping of machines. We give an informal example of how these three

classes of machine can be used to give a semantics to a block of code containing declara-

tions and statements. We observe that the resulting expression appears to be, at first glance,

Page 10

Revised 1/28/99

arbitrary. We then give two theorems that state orthogonality conditions under which ma-

chine algebra expressions can be transformed into other behaviorally equivalent expres-

sions. We conclude the chapter by using one of these theorems to show that two apparently

different semantics for an example program are in fact behaviorally equivalent.

In chapter 4 we turn to the topic of establishing the relationship between the identifiers in

a program with the machines that they represent. We define an environment to be a map-

ping from identifiers to machines, and quickly see that many environments (many different

mappings) are used in resolving the meanings of identifiers in programming languages. We

define a declaration to be an association of an identifier with a machine, and a reference to

be the occurrence of an identifier whose association with a machine must be determined

through the examination of declarations in a particular environment We formalize the no-

tion that certain pairs of declarations maybe indistinguishable in the form of a homograph

relation, and discuss the differing definitions of homograph that arise in different program-

ming languages. We then define a modified set union operator known as a masking union,

and show how this operator can be used to model the computation of the contents of envi-

ronments in terms of other environments. These computations determine the visibility of a

given declaration at each point in the program. We explore three different visibility com-

putations used in Lisp and Scheme, and discuss the modeling of some of the more complex

Ada visibility rules, including the selected component or “dot” notation.

In chapter 5 we put the results of the previous three chapters to work and show how they

are used to specify the constructive semantics of a programming language. There are three

basic concepts that underlie our semantic model: first, an executing program is simply a

state machine; second, a program is a specification for a state machine. Third, a program-

ming language is simply a language for specifying state machines. Our approach to seman-

tics will be to give the semantics of a program not in terms of a concrete state machine (i.e.

Page 11

Revised 1/28/99

the computer itself), but rather in terms of an abstract state machine. Our goal is to make

this abstract state machine both precise and easy to understand so that it may serve as an

aid to the practicing programmer and the compiler/interpreter writer.

Obviously giving the semantics of a program as a single giant state machine would be of

little benefit to either the programmer or the compiler writer. Consequently, just as the com-

puter itself is a composition of state machines (ALU, registers, busses, memory, etc.) our

abstract machine will also be a composition of smaller machines. These component ma-

chines are either primitive machines given by the language itself, or other machines that

have been specified elsewhere in the program.

We shall see that a programming language can be viewed as two components: the specifi-

cation of a small number of primitive machines with known properties (the basic data types

and operations of the language); and the specification of a syntax for indicating how ma-

chines are composed to form larger machines. Most languages provide a syntax for first de-

fining new machines and then using them as components of other machines. These syntax

forms are used for user-defined data types, subprograms, packages, tasks and other high-

level abstractions that can be specified in the language.

From the compiler or interpreter writer’s perspective, any behaviorally equivalent state ma-

chine is then a valid implementation of the program. The challenge for them is to establish

the behavioral equivalence of the implementation with the abstract machine given in the

constructive semantics. Here the properties of composition come into play: it is sufficient

to separately establish that each of the component pieces is equivalent and that each com-

position operation is equivalent, since all of the compositions that we shall use preserve be-

havioral equivalence.

Page 12

Revised 1/28/99

Perhaps the major difference between our abstract semantics and a concrete implementa-

tion is that the abstract machines will not necessarily be finite in number. For example, in

our semantics, a recursive function call will result in a theoretically infinite chain of (iso-

morphic) machines, each one implementing the function, and each one interacting with its

caller (if any) and the machine that it, in turn, calls (we shall see later how information can

be shared between invocations). This leads to a very straightforward model that is easy to

understand and to reason about. However, in actual implementation, the compiler writer

will not want to duplicate the entire machine for each invocation: typically only the data

and the program counter will require additional storage for each invocation. It is then the

compiler writer’s task to satisfy himself that this implementation is behaviorally equivalent

to the abstract semantics.

The term type frequently brings to mind differing and possibly inconsistent concepts. The

three dominant concepts seem to be that a type is either a set of values1, a behavioral (in-

terface) specification, or an implementation specification. We show that state types and ab-

stract types together provide a uniform framework for modeling all three concepts.

Not surprisingly, an executing program or subprogram is modeled as a state machine. Here

we must be careful to distinguish between the executing machine itself and its definition,

namely the program or subprogram itself. The executing program is an actual state ma-

chine, similar in nature to a variable. The definition is a specification of a class of machines,

each one of which executes the program or subprogram. Programs and subprograms are

thus definitions of state types: classes of isomorphic state machines. We shall refer to the

executing machines as instances of the program or subprogram.

1. Or a representative of the set, as is the case in Denotational Semantics.

Page 13

Revised 1/28/99

We formalize constructive semantics in the following way. We formalize the notion of

elaboration as the process of converting a program into a state machine. We explore three

common concepts of type, showing that they are all subsumed by state types and abstract

types. We then give a formal semantics for a number of programming language constructs

taken from Ada: variables, pointers, subprogram calls and expression evaluation, go-to

statements, exception handling, loops, declarative blocks, record and array declarations,

and program and subprogram declarations. These semantics are given in a style similar to

that of denotational semantics, giving the meaning of each expression as a composition of

the meanings of the sub-expressions. We explore the semantics of declarative blocks, not-

ing how visibility computations affect the form of the semantic expressions. Finally we ex-

plore programs and subprograms, looking at the various alternatives for parameter passing.

Chapter 6 summarizes the current work, drawing some conclusions about how the current

work could be applied and outlining some possibilities for future work.

The appendices contain the details of the mathematical formalisms underlying our work.

Appendix A contains the formal definition of HCCS. Appendix B contains the proofs of

several theorems about machine algebra expressions. Appendix C contains a brief summa-

ry masking union properties and the proof of one theorem regarding visibility computa-

tions.

Page 14 Revised 1/28/99

2.0 State Machines and Machine Types

In this chapter we define state machines as they will be used in this thesis. In the process,

we will actually be working with state machines on two different levels of abstraction. The

higher of these abstractions is the level of entire machines, where we wish to consider ma-

chines as distinct objects with unique identities. The lower level of abstraction is the level

of states and transitions. As might be expected, we will develop the higher level of abstrac-

tion (machines) in terms of the lower level of abstraction (states and transitions).

Following a discussion of machines (at both levels) and equivalence relations between ma-

chines, we define two notions of typing with respect to machines. We define a machine type

to be a family of isomorphic machines, and we define an abstract type to be a family of be-

haviorally equivalent machines. These definitions will be the basis for our model of types.

Finally, we will conclude the chapter by describing a variant of Petri Nets that we will use

to illustrate the relationships between machines.

2.1 Algebra of States and Transitions: HCCS

It should be realized from the outset that the machine algebra that we will ultimately devel-

op is simply syntactic sugar for a language of states and transitions: every expression in our

machine algebra will have an exact equivalent in the language of states and transitions. In

fact, we will conduct proofs of our theorems about our machine algebra by converting the

machine algebra expressions into the corresponding language of states and transitions and

conducting the proofs in that language. The advantage of the machine algebra is that one

term in the machine algebra (one machine) will expand into a term and a family of related

equations in the states and transitions language. The machine algebra formulation is thus

more compact.

Page 15

Revised 1/28/99

The states and transitions language used here is basically a hybrid of the operational models

of Milner’s CCS and Hoare’s CSP. We shall call this hybrid language HCCS (for Hybrid-

CCS). HCCS is CCS with the following modifications:

1 Instead of using CCS’s flat set of actions, we use an abelian group of actions as

employed in Milner’s SCCS and ASCCS. This, in conjunction with the modi-

fied composition operator, will allow n-way synchronization between ma-

chines.

2 Milner’s + operator is replaced by the similar operation used by Hoare. We

will use ⊕ to represent this operation. This operator behaves the same as Mil-

ner’s for deterministic choices, but differs in its treatment of non-deterministic

choices. The use of the Hoare operator as opposed to the Milner operator makes

Hoare’s failures equivalence a congruence relation in HCCS.

3 We alter the definition of Milner’s | operation to allow n-way synchronization

between agents, where CCS only allows binary synchronization.

In the following sections, we summarize the important aspects of HCCS. The discussion in

this chapter, while formal in places, is intended to provide an intuitive understanding of

HCCS. Appendix A provides a formal summary of HCCS, including a semantic model

based upon Milner’s synchronization trees.

2.1.1 Actions

The state machines that we shall use in our model are simple extensions of classical finite

state machines. Conceptually, each machine has a number of states, and a number of la-

Page 16

Revised 1/28/99

beled transitions between states1. We shall call the labels on the transitions actions, in

keeping with Milner’s terminology.

In classical finite state machines, each transition of a machine is labeled with a single sym-

bol from a set of symbols, each one of which is primitive. In contrast to this flat structure

of symbols, the set of actions has considerable structure to it. We begin with a set of atomic

actions Λ = {a,b,c ,...}, a set of atomic inverse actions Λ = {a,b,c ,...}, and a unique iden-

tity action 1. There is a 1:1 correspondence between atomic actions and inverse actions.

The set of primitive actions A = Λ∪Λ∪{ 1} = {..., c ,b,a,1,a,b,c ,...}. The complete set of

actions is then constructed from the set of primitive actions, a composition operator × and

an inverse operator . The unique element 1 plays the role of an identity element with re-

spect to the composition operator. We further note that every element has an inverse. The

set of actions is then recursively defined by:

A ⊂ Act

∀a, b ∈Act:

1) a × b ∈Act

2) a ∈Act

The set of actions and its properties is more completely defined in Appendix A, section A.1

on page 134. We simply note here that Act is an Abelian group.

1. Unlike finite state machines, neither the number of states nor the number of actions is required to
be finite.

Page 17

Revised 1/28/99

We define Atom(a) to be the set of primitive actions that a is comprised of. For example,

if a and b are primitive actions, then Atom(ab) = {a, b}. By extension, if A is a set of ac-

tions, we define Atom(A) = ∪a∈A Atom(a). For A⊆Act , we define A+ to be the set of ac-

tions generated by A and ×, and A* be the subgroup generated by A ∪ {1}, × and .

As we shall soon see, actions are the means by which machines interact with each other. A

machine can only perform an action a (take the transition labeled with the action a) when

another machine with which it is interacting performs the inverse action a. If a machine has

a transition labeled with the action ab , then it can only perform that action when other ma-

chines with which it is composed perform the actions a and b. Note that this may either be

a single machine performing the action ab , or two individual machines performing the ac-

tions a and b.

2.1.2 Machines

At the level of states and actions, HCCS represents states with syntactic expressions that

define the possible future behavior of the state. States come in parameterized and non-pa-

rameterized versions. Fully specified states are known as agents. Parameterized states are

known as agent expressions. Agent expressions are allowed to contain variables, whereas

agents are not. Thus a fully specified state machine is one in which all states (agents) are

fully specified (contain no variables), whereas a parameterized state machine is one in

which variables occur in one or more of the expressions defining its states (agents).

In developing our programming language semantics we shall need both fully specified state

machines and machines whose specifications are parameterized. These parameterized ma-

chines we shall call generic state machines, or generics for short. A generic can be con-

Page 18

Revised 1/28/99

verted to a fully specified state machine by providing fully specified state machines as the

actual values of the parameters.

In the following, we shall be using the term agent expression throughout in all definitions.

Since an agent is simply an agent expression without variables, it should be understood that

all of these definitions and related discussions pertain to agents as well. The discussions,

up to but not including the discussion of equivalence, pertain uniformly to both fully spec-

ified state machines and generics. When we discuss equivalence, we shall have to treat ge-

nerics differently than fully specified state machines.

A machine is specified in terms of its states and transitions. To specify a machine, we define

a set of states that we shall call agent expressions, a set of labels that we shall call actions,

a set of labeled transitions between states, and an initial state. The first three of these we

shall refer to as a labeled transition system. More formally, a labeled transition system is

a triple:

(E,Act ,{→a : a ∈Act })

where E is a set of agent expressions, Act is a set of actions, and each →a is a relation

between agent expressions.

A machine is then a four-tuple consisting of a labeled transition system and an initial state

P0. Note that our machines, in contrast with classical finite state machines, do not necessar-

ily have a finite number of states (agents) or a finite number of symbols (actions). A state

machine is a machine in which no variables occur in its agent expressions. We shall use

M1, M2, M3,... to represent state machines, and M(x,y) to represent a generic machine having

parameters x and y.

Page 19

Revised 1/28/99

From time to time we shall need to compare sets of actions. In practice, we will usually take

the set of atoms used in each set of actions and compare the sets of atoms instead. We shall

call the set of atoms associated with a machine the sort of the machine.

We shall specify our labeled transition systems by giving families of equations that are sim-

ilar to the production rules of a grammar. From this set of equations and a few inference

rules we can derive the set of agents, set of actions and the set of relations that together de-

fine the labeled transition system.

2.1.3 Agent Expressions

The set of agent expressions E includes a number of agent constants K = {A,B,C,...} and

a set of agent variables X = {X,Y,Z,...}:

K∪X ⊆ E

Constants can be thought of as names that have been given to particular states (not all states

are necessarily named with constants).

Given some initial members of the set of agent expressions E, we now define the full set of

agent expressions recursively as follows:

∀ E,F ∈ E, a ∈Act :

Action:

1) a.E ∈ E

Informally, a.E means that the agent expression a.E can perform the action a and then per-

forms actions associated with the agent expression E.

Page 20

Revised 1/28/99

Product:

2) E | F ∈ E

E | F means that the agent expressions E and F have been combined as machines operating

in parallel with each other. Actions performed by the composition consist of either E or F

performing an action (asynchronously, independent of the other agent expression) or both

performing actions simultaneously (synchronous action). We shall provide a more formal

description of the transition semantics later.

Summation:

3) Ei ∈ E

where Ei is an independent set of agent expressions from E, and I is an index set. Ei

means that the agent expression is a composition of alternative agent expressions, and will

ultimately perform the observable actions specified by exactly one of the expressions in the

set of Ei. There is one summation that we shall have occasion to use frequently, and this is

the inaction machine 0:

0 ≡ Ei (1)

Because the set of expressions is empty, this machine never performs any actions.

In the special case of a summation involving two machines, we shall write the summation

as E⊕F.

∑
i∈I

∑
i∈I

∑
i∈∅

Page 21

Revised 1/28/99

It is important to note that the operation being defined here is not Milner’s summation op-

erator, but a generalization of Hoare’s operator to an arbitrary number of terms. As we

shall see, the behavior of the Milner and Hoare operators is the same for observable actions,

but different for the non-observable action 11.

Restriction:

4) E A ∈ E

E A means that the agent expression is the expression specified by E except that any ac-

tions not in Atom(A)* are hidden. If an action is hidden, then no agent expression outside

of E may trigger that action. A related operation is to hide just the actions that are in At-

om(A)*. We shall designate this with the notation E\ A, and define this to be:

4a) E\ A ≡ E (Act - Atom(A)*)

Morphism :

5) E[φ] ∈ E

E[φ] means the agent expression specified by E after the actions have been mapped as

specified by φ, where φ is a mapping from Act to Act such that and φ(1)

= 1.

Constant Definitions:

1. As we shall see shortly, it is not possible for another machine to determine that a 1 action has
occurred on another machine, hence the notion of non-observability.

φ(a) = φ(a)

Page 22

Revised 1/28/99

Finally, we define constants by equating the constants with other agent expressions, as in

the following example which defines the constant to be the agent expression E:

A ≡ E

Constants provide a means for defining recursive expressions. Consider the defining equa-

tions:

A ≡ a.B

B ≡ b.A

Together these equations define a machine that will endlessly perform the action sequence

a.b.a.b...

2.1.4 Transition Rules

Now that we have a set of agent expressions, we give the rules defining the transitions be-

tween agent expressions.

Action:

(2)

This rule says that the agent expression a.E may make a transition to the agent expression

E when the action a occurs. (We note that the occurrence of an action means that some oth-

er agent expression, with which this one has been composed in a product, has simultaneous-

ly made a transition with the action a.)

a.E →a E

Page 23

Revised 1/28/99

Summation:

Summation has two rules, the first covering observable transitions (transitions involving an

action other than 1), and the other covering non-observable actions.

 1 (3)

This rule says that if agent expression Ej can be converted into an agent expression E′j

when the observable action a occurs, then a summation Ei containing Ej can also be

converted into the agent expression E′j when the action a occurs. This gives summation the

capability of representing a choice between the possible future states Ei. Once an action as-

sociated with one of these (Ej) has been made, the other choices are discarded and the sum-

mation behaves as Ej would have after making a transition on a.

2 (4)

This rule says that if an agent expression Ej can be converted into an agent expression E′j

when the unobservable action 1 occurs, then a summation Ei containing Ej can also be

converted into the summation Ei[E ′j /Ej] when the action 1 occurs. Thus non-observ-

able transitions in a summation do not cause the other alternatives to be discarded. Only

1. This is an obvious generalization of the (COND2) inference rule of [Broo83] p. 168.
2. This inference rule is both less restrictive and more general than the (COND1) inference rule of

[Broo83] p. 168.

Ej →a E′j
Ei →a E′j

(j∈Ι,a≠1)∑
i∈I

∑
i∈I

Ej →1 E′j
Ei →1

(j∈Ι)
Ei[E ′j /Ej]∑

i∈I
∑
i∈I

∑
i∈I

∑
i∈I

Page 24

Revised 1/28/99

when one of the agent expressions in the summation makes an observable transition via

Rule (3) are the other choices discarded.

Product:

There are three transition rules governing products. The first two cover the cases in which

the machines in the product act asynchronously with respect to each other. The third rule

covers the case in which the machines act synchronously.

(5)

(6)

These rules say that if either machine can make a transition, then that machine may make

the transition in the product. Here the other machine takes no action, and the machines op-

erate asynchronously.

(7)

This rule says that if the agent expression E can be converted into the agent expression E′

when the action a occurs, and the agent expression F can be converted into the agent ex-

pression F′ when the action b occurs, then the agent expression E | F that is the product of

these agent expressions can be converted into the agent expression E′ | F′ when the action

ab occurs (recall that ab is the product of the actions a and b).

E →a E′

E |F →a E′ | F

E |F →b E | F′

F →b F′

E →a E′

E |F →ab E′ | F′

F →b F′

Page 25

Revised 1/28/99

One special case of this rule is of particular interest. If a = b, then ab = 1 and the compo-

sition does not need to interact with any other machines in order to make the transition. The

following diagram illustrates the transition possibilities of a product:

Restriction:

(8)

where S is any subset of Act containing 1. This rule says that if the agent expression E

can be converted into the agent expression E′ when the action a occurs, then the agent ex-

pression E S (which is the agent expression E with its actions restricted to the actions

present in S) can be converted into the agent expression E′ S when the action a occurs

provided that a is a member of S. The absence of any other rule for transition of restricted

expressions implies is that if a is not a member of S then no transition is possible on a.

Morphism :

E |F

E′ | F E | F′E′ | F′

E →a E′
E S →a E′ S

(a∈S)

Page 26

Revised 1/28/99

(9)

This rule says that if the agent expression E can be converted into the agent expression E′

when the action a occurs, then the agent expression E[φ] (the agent expression E with all

of its actions mapped into new actions by the morphism φ) can be converted into the agent

expression E′[φ] by the action φ(a).

Constant:

(10)

This rule says that if the constant C is defined to be the agent expression E, and E can make

a transition to E′ with the action a, then the constant C can also make a transition to E′ with

the action a.

2.1.5 Determining the Sort of a Machine

The sort of a machine is the set of primitive actions that occur in the labeled transition

system of the machine. The sort of a state machine is the union of the sorts of the agents in

its labeled transition system. Equivalently, the sort of the machine can be defined by

Atom(Act), the set of primitive actions that occur in the action set associated with the

machine’s labeled transition system.

E →a E′

E[φ] →φ(a)
E′ [φ]

E →a E′

C →a E′
(C≡E)

Page 27

Revised 1/28/99

The Sort(E) operation takes as its argument an agent E and returns the set of primitive ac-

tions that appear in the agent (the formal definitions of these operations and some resulting

theorems appear in Appendix A section A.6 on page 147).

2.1.6 Constructing a Labeled Transition System from Equations

The transition rules define a relation between agents. We call the set of agents related to a

given agent by an inference rule its successors, and the transitive closure of the transition

relation defines the set of descendants. The set of agents in the labeled transition system is

then the set containing the initial agent and all of its descendants. If A is the sort of the initial

agent and its descendants, then A* is a superset of the set of actions associated with the ma-

chine. The set of transitions is the set derivable from the initial agent and the transition

rules.

2.1.7 Labeled Transition System Examples

We now give some simple examples of machines and their defining equations. Consider

the following set of equations, which defines the state machine (in this case a finite state

machine) shown in Figure 2.

A1 ≡ a.A2

A2 ≡ b.A1.

It should be pointed out that the set of equations defining a machine is not, in general,

unique. This same machine could have been specified by the equation:

A1 ≡ a.b.A1

In this case, we have eliminated the constant A2, but the machine structure is the same.

Page 28

Revised 1/28/99

2.1.8 Interactions Between Machines

Interactions between state machines are simple: two machines interact when one makes a

transition on an action while a second machine simultaneously makes a transition on the

inverse of that action. Transitions are thus synchronous interactions between machines.

This is the only way in which machines may change state.

As an example, consider the labeled transition systems of two machines as shown in Figure

2 and specified by the following set of equations:

Machine A:

A1 ≡ a.A2

A2 ≡ b.A1

Machine B:

B4 ≡ a.B5 + a.B6

B5 ≡ b.B4

B6 ≡ b.B4.

A1

A2

b

a

Figure 1 Simple State Machine

Page 29

Revised 1/28/99

(Note that we have not given a complete definition of the machines, since we have not spec-

ified an initial state.) If machine A is in state A1, and machine B is in state B4, then machine

A can make a transition to state A2 with the a action at the same time that machine B makes

a transition to state B5 (or to state B6) with the a action. Note that there may be non-deter-

minism in machine behavior: machine B can transition to either state B5 or state B6 with

the a action.

The joining of machines together so that interactions are possible we shall call the compo-

sition of machines, and we shall indicate composition with the symbol |, writing A|B for

the composition of the machines A and B shown in Figure 2. Formally, this is defined to be

the composition of the initial states of A and B, e.g. A1|B4 in the above example. The com-

position operator, like its agent counterpart, is both associative and commutative, but it is

not idempotent.

A1

A2

B4

B5 B6

Machine A Machine B

b

a

a

a b
b

Figure 2 Interacting State Machines

Page 30

Revised 1/28/99

2.2 Equivalence

Just as important as the definition of a state machine is the notion of equivalence between

two machines. We review by example the properties of several different equivalence rela-

tions stemming from automata theory, Milner’s work on CCS, and Hoare’s work on CSP.

This comparison provides motivation for our use of Hoare’s failures equivalence as our be-

havioral equivalence relation.

The notion of equivalence that we are interested in is one that is based upon our ability to

distinguish between machines by observing differences in the way in which they respond

to observable actions. In considering such equivalences, it must be noted that the only tran-

sition in a machine that cannot be influenced by the observer (the observer is, itself, simply

another machine) and therefore cannot be observed, is the transition on the action 1, which

Milner has called the silent action.

There are many possible notions of equivalence between machines, all differing mainly in

their treatment of silent actions. While we shall be using only Hoare’s failures equivalence

[Hoare85] in our work, it is instructive to develop an informal understanding of this equiv-

alence with respect to three other common notions of equivalence, namely trace equiva-

lence[Miln89][McN82], strong equivalence [Miln80][Miln83][Miln89] and observational

equivalence [Miln80][Miln83][Miln89].

The notion of equivalence arising from classical automata theory is often referred to as

trace equivalence. Under trace equivalence, two machines are equivalent every sequence

of actions that is possible for one machine is also possible for the other. Unfortunately, trace

equivalence does not distinguish between the two machines shown in Figure 3, which we

would certainly want to distinguish in a real design setting, since the non-determinism in

machine B can lead to a state in which the action b would not be possible, while machine

Page 31

Revised 1/28/99

A will always respond with the action b after the action a. We would not want to inadvert-

ently substitute machine B (which has observable non-determinism) for machine A which

is completely deterministic in its behavior.

Milner’s strong equivalence solves this problem by requiring that there be a very tight tran-

sition-by-transition correspondence between two machines in order to consider them

equivalent. This notion of equivalence turns out to be too strong for our purposes. Although

strong equivalence distinguishes between the machines of Figure 3 (as we wish), it also dis-

tinguishes between the machines of Figure 4, which in a typical design context we would

want to consider equivalent since their observable actions are identical.

Milner’s weak or observational equivalence is a step closer to what we are looking for,

since it ignores 1 actions that do not affect branching behavior as in Figure 4. Unfortunate-

ly, it still requires a structural similarity between machines that is stronger than what we

desire. Figure 5 shows two machines that we would like to consider equivalent, but which

observational equivalence distinguishes between1. Note that both machines have exactly

the same amount of non-determinism, but that the branches that decide the restrictions on

a
a a

bb

Figure 3 Trace Equivalent Machines

Machine A Machine B

Page 32

Revised 1/28/99

a and b simply occur in a different order. There is no way to distinguish between these ma-

chines through experimentation, and therefore we would like to consider them equivalent.

1. Our model was originally formulated using observational equivalence, but Theorem 4 could not
be proved in this system. It was this example that Milner used to refute Theorem 4 in the original
formulation and it was his suggestion that Hoare’s failures equivalence might be more appropriate
for our model.

a a

b

b

1

Machine A Machine B

Figure 4 Machines Distinguished by Strong Equivalence

1 1

1 1 1 1

a b c d

1 1

1 1 1 1

a c b d

Figure 5 Machines Distinguished by Observational Equivalence

Machine A Machine B

Page 33

Revised 1/28/99

Finally, we arrive at Hoare’s notion of failures equivalence, which we shall call behavioral

equivalence. Behavioral equivalence distinguishes between the machines of Figure 3,

while considering the machines of Figure 4 equivalent and the machines of Figure 5 equiv-

alent. We will shortly provide a definition for behavioral equivalence.

There is a well defined relationship between these four equivalences. Strong equivalence

implies observational equivalence, which implies behavioral equivalence, which implies

trace equivalence.

2.2.1 Behavioral Equivalence

Behavioral equivalence (which is Hoare’s notion of failures equivalence) considers two

aspects of the behavior of a machine:

1 The traces of a machine (the sequences of actions that it can generate);

2 The failures of a machine, which are the actions that the machine may not re-

spond to after a given trace.

It is important to recognize that these conditions characterize what a machine may do, not

necessarily what it will do. The traces of a machine indicate action sequences that the ma-

chine may generate. The failures of a machine indicate the actions that may be rejected after

the machine has responded to a sequence of actions.

Formally, Hoare characterizes a machine in terms of its observable actions, its traces (ob-

servable sequences of actions) and its failures (the actions that may not be responded to af-

ter a given sequence of observable actions).

The initials of a machine are the first observable actions of the machine. The traces of the

machine are the sequences of observable actions that occur starting from the initial state of

Page 34

Revised 1/28/99

the machine. A machine can refuse a set of events X if it can make a silent transition to a

state none of whose initials is a member of X1. The failures of a machine are the pairs (s,

X) such that the machine has a state reachable through the observable sequence s that can

refuse X. The following definitions2 make this precise

Initials(S) = {a:∈Act | ∃S′s.t. S S′}

Traces(S) = {s | ∃S′s.t. S S′}

Refusals(S) = {X | ∃S′s.t. S S ′ and X∩Initials(S′)=∅}

Failures(S) = {(s,X) | ∃S′s.t. S S′ and X∩Initials(S′)=∅}

We have the following result for behavioral equivalence:

P = 1.P

2.2.2 Equivalence of Generic Machines and Agent Expressions

As we pointed out earlier, we must make a distinction between agents and agent expres-

sions (state machines and generic machines) when defining equivalence. We cannot direct-

ly compare the sequences of actions and failures of agent expressions since we will not

know what all of the sequences will be until values have been provided for all of the vari-

ables. Consequently, we define two agent expressions (generic machines) to be equivalent

1. Note that every state can make a silent transition to itself
2. [Broo83] p. 96

⇒
〈a〉

⇒s

⇒〈〉

⇒s

Page 35

Revised 1/28/99

if they have the same set of variables and, for all possible values of the variables (where the

values are themselves agents) the agents that result from the substitution are equivalent.

Consider the following three generic machines, in which X is a variable:

G1 ≡ a.b.0 | X

G2 ≡ (a .b.0 ⊕ a.b.0) | X

G3 ≡ (a .b.0 ⊕ a.0) | X

Machines G1 and G2 are equivalent for all values of X, since a.b.0 is behaviorally equiva-

lent to (a .b.0 ⊕ a.b.0) and each value of X, by definition, is equivalent to itself. Machine

G3, on the other hand, is never behaviorally equivalent to either of the other machines, since

(a .b.0 ⊕ a.0) is not behaviorally equivalent to either a.b.0 or (a .b.0 ⊕ a.b.0).

2.3 Additional Machine Properties and Constraints

The calculus of machines that we have developed thus far is capable of defining a very

broad class of machines. However, our model of programming languages is not based upon

the use of arbitrary machines, but rather upon machines with very specific properties. In

this section we will define those additional properties and provide some motivation for their

usefulness.

Since one of the major goals of our work is to formulate a semantic model that is modular

in the sense that each machine can be understood independently of other machines1, we

1. This is not to say that the interaction between machines is not a factor in understanding the
machines, but rather to say that the definition of one machine should be independent of the defini-
tion of others.

Page 36

Revised 1/28/99

must ensure that our machine specifications (formulated in HCCS) are mutually indepen-

dent. We therefore impose a constraint that the constants used in the defining equations of

each state type be unique to that state type. This will ensure that each state type’s defining

equations are distinct from those of every other state type.

Up to this point, we have not ascribed any meaning to any of the actions associated with

our machines. Without ascribing meanings, these models are of little benefit, so we begin

by categorizing the actions and ascribing meaning to the categories.

2.3.1 Input and Output Actions

Back when we first defined actions, we constructed the set of primitive actions from a set

of atomic actions and a set of atomic inverse actions. We will use atomic actions to repre-

sent the basic operations that a machine is capable of performing. For example, if we had

a machine representing a variable, then the actions that set values and read values on the

variable would consist entirely of actions composed of atomic actions. We shall call these

actions input actions, because they represent an input to the machine to ask it to do some-

thing. Note that the term input refers to the direction of the request, not the direction of in-

formation flow: the action reading the value of a variable goes to the variable, even though

the net result is the transfer of a value out of the variable. We note that the set of input ac-

tions is simply Λ+, the set of all actions constructed from atomic actions.

The inverse of an input action is an output action. An output action is an action constructed

entirely of atomic inverse actions, and thus output actions are all members of the set Λ+.

An output action represents a requests by a machine for another machine to take some ac-

tion. For example, a machine representing an assignment operator would make a request of

one variable to read its value, and another variable to store the value.

Page 37

Revised 1/28/99

There are members of the set of actions that are neither input actions or output actions: they

contain both atomic actions and atomic inverse actions. We shall call such actions mixed

actions.

2.3.2 Atomic Actions Appear on Exactly One Machine

Atomic actions represent a request to a machine to perform some operation. Since we wish

such requests to be unambiguous, we shall require that an atomic action may appear as a

transition label on exactly one machine (although it may label any number of arcs on that

machine). In contrast, the inverse of that action may appear on any number of machines.

We will refer to the one machine on which an action appears as the defining machine of

that action. We define the Def() operation that takes a machine as an argument and returns

the set of actions defined on that machine.

2.3.3 Activate and Idle Actions

One of the important issues in our model is the question of when machines are created and

destroyed. We shall deal with this issue in a formal manner by considering that all machines

exist all the time. Instead of creating and destroying the machines, we will add an additional

state to each machine, its IDLE state, and two additional actions, the activate action α and

the idle action ι, to each machine. While in the IDLE state a machine never responds to

any action except the activate action. An interaction with the activate action is equivalent

to creating the machine, and causes the machine to transition from the idle state to its initial

working state. An interaction with the idle action is equivalent to destroying the machine,

and causes the machine to transition back to the idle state. We note that the activate and idle

actions are both atomic actions, and are therefore unique to the machine that they appear on.

Page 38

Revised 1/28/99

For the purposes of defining machines, we subdivide the set of actions Act into three dis-

joint subsets: Act α, Act ι, and Act ω, where Act α is the set of activation actions, Act ι

is the set of idle actions, and Act ω is the set of all other actions which we shall refer to as

working actions. We thus have,

Act = Act α ∪ Act ι ∪ Act ω ∪ {1}

2.4 Orthogonality

It is often important to determine if two machines can not directly interact with each other,

since if two machines cannot interact (directly or indirectly), then a number of equivalent

restructurings of a composition in which the machines occur may be possible.

This condition of relative independence is so important that we give it a name: orthogonal-

ity. If no actions appear on one machine whose inverses appear on the other (we allow both

to have the silent action 1), we say that they are orthogonal. We use the symbol ⊥ to denote

orthogonality, and write

Mi ⊥ Mj

to indicate that Mi and Mj are orthogonal. Formally the orthogonality relation is given by:

Mi ⊥ Mj ⇔ Sort(Mi) ∩ Sort(Mj) = Sort(Mi) ∩ Sort(Mj) = Sort(Mi) ∩ Sort(Mj) = {1} (11)

For convenience,we shall also define orthogonality between subgroups of actions, and be-

tween the actions of a machine and an arbitrary subgroup of actions:

S ⊥ T ⇔ Atom(S) ∩ Atom(T) =Atom(S) ∩ Atom(T) =Atom(S) ∩ Atom(T) ={ 1}

Page 39

Revised 1/28/99

Mi ⊥ S ⇔Sort(Mi) ∩Atom(S) = Sort(Mi) ∩ Atom(S) = Sort(Mi) ∩Atom(S) = {1}

where S, T ⊆ Act .

We have the following result for orthogonality:

Mj ⊥ Ma, Mj ⊥ Mb implies Mj ⊥ (Ma | Mb)

2.5 Types

In this section, we will explore the notion of a type as an equivalence class of machines.

There are two different kinds of equivalence class that we shall find useful in our work. The

first of these, which we shall call a state type, is an equivalence class in which all machines

belonging to the class are isomorphic under a mapping operation on actions. The second

kind of equivalence class we shall call an abstract type, in which the machines belonging

to the type are behaviorally equivalent under a mapping operation on actions when inter-

action with the machines is restricted to the actions associated with the type, but are not

necessarily isomorphic. As an example of the difference between state types and abstract

types, consider the following three machines:

A1 ≡ a.0

A2 ≡ a.0 ⊕ a.0

A3 ≡ a.0 ⊕ b.0

There is no mapping between any pair of these machines that makes them isomorphic, but

machines A1 and A2 are clearly behaviorally equivalent. Machine A3 can be made behav-

iorally equivalent to A1 and A2 by restricting its actions to the set {a}. Thus all three ma-

Page 40

Revised 1/28/99

chines could be members of an abstract type defined as a set of machines behaviorally

equivalent to A1 and restricted to the actions of {a}.

Abstract types give us a way to extend the behavior of machines while still maintaining a

well-defined relationship with other classes of machines. Abstract types can be used to de-

fine hierarchies of types, in which the “parent” class defines common behavior (its abstract

type) for all of its children. Note that a machine may belong to more than one abstract type.

For example, if we define the machine A4:

A4 ≡ b.0

and use it as the basis for defining a second abstract type (this time restricted to the actions

of {b}), then machine A3 can be a member of both abstract types. This ability to be a mem-

ber of more than one abstract type provides a nice model for multiple inheritance in object

oriented languages. Abstract types also provide a model for the architecture/implementa-

tion concepts found in VHDL.

2.5.1 State Types

A state type is a set of state machines that are isomorphic under a mapping operation on

actions. Although the labeling of each machine in the set must be different (at a minimum,

the activate and idle actions must be different), the labeling varies from machine to machine

within the set in a very structured and regular way. For any two machines Mi and Mj, there

is a mapping from the actions of Mi to the actions of Mj such that if the mapping is used to

relabel Mi, the resulting machine is identical in all respects to Mj. All machines in the set are

thus isomorphic. Figure 6 shows a set of four isomorphic machines.

Page 41

Revised 1/28/99

More formally, a state type S is defined to be a triple (M,L,Φ), where M = {M1, M2, M3,...}

is an indexed set of state machines (we will let I = {i |Mi∈M} be the set of indices of the

machines in the state type), L = ∪i∈IAct(Mi) is the set of actions associated with the state

type,and Φ= {φj→k:Act(Mi)→Act(Mi)| j,k∈I} is a set of morphisms mapping the actions of

each machine to the actions of every other machine in the type such that for all Mj, Mk ∈M:

Mj[φj→k] ≡ M k

where Mj[φj→k] indicates the relabeling of Mj to use the actions of Mk, and ≡ signifies iden-

tity. As a notational convenience, we shall often write Mj[φk] when we mean Mj[φj→k]. As

a further notational convenience, we shall frequently write M∈S, where S is a state type,

when we mean that M∈MS, where MS is the set of machines associated with that state type.

While this may be a satisfactory definition of a state type from a mathematical perspective,

we have not yet provided a constructive means of specifying the machines that belong to

the state type. We thus give an alternate and equivalent definition of state type as a pair

(M0,φ) where M0 is a fully specified “prototype” state machine and φ={Act(M0)→ Act(Mn)}

Figure 6 Four Isomorphic Machines

1

2

a b

M 1

1

2

a′ b′

M 1

1

2

a′′ b′′

M 1

1

2

a′′′ b′′′

M 1

Page 42

Revised 1/28/99

is a set of functions mapping the actions of M0 to the actions of M1, M2, M3,..., which are the

other machines of the type such that for all M k ∈S:

M0[φ0→k] ≡ M k

where M0[φ0→k] is a relabeling of M0 to use the actions of Mk and ≡ signifies identity.

2.5.2 Abstract Types

In the previous section, we defined a state type to be a set of machines that were isomorphic

under a relabeling operation. We now define a less restrictive notion of type that we shall

call an abstract type. Instead of requiring that the machines be isomorphic under the rela-

beling operation, we merely require that the machines of an abstract type be behaviorally

equivalent under the relabeling operation when interaction with the machines is restricted

to the actions associated with the type.

Formally, an abstract type A is defined to be a triple (M,L,Φ), where M = {M1, M2, M3,...}

is an indexed set of state machines (we will let I = {i | M i∈M} be the set of indices of the

machines in the state type), L is the set of actions associated with the abstract type,and

Φ={ φj→k:(Act(Mj) ∩ L) → (Act(Mk) ∩ L)| j,k∈I} is a set of functions mapping those ac-

tions of each machine that belong to the abstract type to those actions of the other machines

that also belong to the type such that for all Mj, M k ∈S:

Mj[φj→k] L = M k L

where = signifies behavioral equivalence.

Page 43

Revised 1/28/99

Lemma 1 Every State Type is also an Abstract Type

We now show that every state type is also an abstract type, with MA=MS, LA = LS and

ΦA=ΦS.

Proof: Let S=(M,L,Φ) be a state type, and Mj and Mk ∈S. Then Mj[φj→k] L≡Mk≡Mk L

(where ≡ signifies identity), and since identity implies failures equivalence, then

Mj[φj→k] L=Mk L under behavioral equivalence, hence (M,L,Φ) is also an abstract type.

Based upon this definition, it should be obvious that more than one state type can belong to

the same abstract type. For example, machine D in Figure 7 is behaviorally equivalent to

machine B in Figure 2, and therefore both could be members of the same abstract type.

2.5.3 Extensionality and Types

It is reasonable to ask how the membership of machines in state types and abstract types is

determined. One strategy is to explicitly specify the membership of each machine in the

type. With this approach, the mere existence of a mapping between two machines that

would make them equivalent (either isomorphic or behaviorally equivalent) under a rela-

D4

D5

Machine D

a
b

Figure 7 Behaviorally Equivalent Machine for Machine B

Page 44

Revised 1/28/99

beling operation does not mean that the machines are of the same (state or abstract) type.

We believe that this approach is consistent with the use of types in production programming

languages.

Another strategy is to consider machines to be of the same type if a mapping exists that

makes them equivalent. This is analogous to the principle of extensionality discussed fre-

quently in the denotational semantics literature. We believe that this approach is inconsis-

tent with the use of types in production programming languages. Furthermore, we conjec-

ture that this notion is incompatible with the notion of function overloading in the sense that

it will make overload resolution undecidable in many cases.

2.6 Petri Net Extensions

For ease in illustrating the interactions between machines, we shall develop a graphical no-

tation based on petri nets that we shall call reduced Petri nets. Reduced Petri nets are col-

ored Petri nets with two extensions added. The first of these is due to Eaker

[Eaker91a][Eaker91b]. In Eaker’s notational extensions (see Figure 8), the identity of each

token is preserved as it passes through a transition. This is indicated by an arc passing

through the transition (Figure 8a). Similarly, the notation indicates the destruction of to-

kens (Figure 8b) and the creation of tokens (Figure 8c). We further extend Eaker’s notation

by labeling each intersection of an arc and a transition with an action. Note that since the

only possible interaction between machines is between a machine with an arc labeled with

an action a and another machine labeled with its inverse a, each transition in our diagrams

will be labeled with both an action and its inverse.

Figure 9 uses our reduced Petri net notation to illustrate the interaction of machines A and

B from Figure 2. In this illustration there is a separate transition in the diagram for each

Page 45

Revised 1/28/99

possible interaction between the machines A and B. The presence of a separate transition

for each interaction leads to a combinatorial explosion that significantly limits the useful-

ness of the extended Petri net diagram as a documentation technique. This naturally leads

us to consider possible ways of simplifying the diagram.

2.6.1 Reduced Petri Nets

The simplification we shall consider here involves reducing a collection of nodes in the Pet-

ri net to a single node containing a typed token. We can take the set of nodes that a token

can pass through in a Petri net along with the set of labeled arcs connecting the nodes to be

the definition of a machine M. We can then collapse these nodes into a single node on the

Petri net containing the machine M. Similarly, we can collapse all of the transitions into a

single transition that is now labeled with the actions of the machine Act(M). To be equiva-

lent to the original Petri net, the new node must contain a single instance of machine M.

Now the collapsing of the transitions will require a similar collapsing of the nodes on the

other side into its machine definition. We call a network that has been reduced in this man-

ner a reduced Petri net. While reductions of this type are not always possible in arbitrary

Petri nets, we shall see that the nets arising from our semantic model will frequently be re-

Figure 8 Eaker’s Extensions to Petri Nets

a) Token preserved
through transition

b) Token destroyed
at transition

c) Token created
at transition

a a a

Page 46

Revised 1/28/99

Machine A Machine B

Figure 9 Extended Petri Net Showing the Composition A|B

b b

b b

a a

a a

A1

A2

B4

B5

B6

Page 47

Revised 1/28/99

ducible. In fact, we shall see that this kind of reducibility is highly desirable: the ability to

reduce in this manner is the ability to present a description of a piece of software at a higher

level of abstraction.

For example, the composition A|B of Figure 9 can be represented by the reduced Petri Net

of Figure 10, with LA = {a, b}, and LB = LA ={a, b}.

A BLA

Figure 10 Reduced Petri Net Showing the Composition A|B

LB

Page 48 Revised 1/28/99

3.0 Classes of Machines

In the previous chapter we hinted that the building blocks for our programming language

semantics would not be based upon arbitrary machines, but rather a smaller class of ma-

chines having specific properties. Two of these properties that are shared by all of the ma-

chines that we will use have already been discussed: all machines may operate asynchro-

nously with respect to each other; and atomic actions (as opposed to their inverses) appear

on exactly one machine.

In defining our semantics we will require two categories of machines: value machines,

which are used to model the storage of values; and interaction machines, which are used

to model interactions between other machines.

3.1 Value Machines

One of the fundamental needs of a programming language is to have a means of represent-

ing values. In our model of programming languages, each variable is modeled as an in-

stance of a special kind of state machine that we shall call a value machine. The states of

this machine represent the values that the variable can assume. A data type in a program-

ming language then corresponds to a state type that defines the collection of machines ca-

pable of representing those values. In a simplistic model of programming languages, de-

claring a variable to be of a particular type can be interpreted as designating the particular

machine from the state type that will represent this particular variable. As we shall see in

the next chapter, a more complex interpretation will be required when type structure is in-

troduced.

To clarify the intended effect of actions on variable machines, we subdivide the working

actions of value machines into two subsets: one set of actions that set values, and one set of

Page 49

Revised 1/28/99

actions to read the values. We shall call the actions that set values the input actions, and

designate these actions with the notation

i n

where i indicates that this is an input action (one that sets a value), and n indicates that this

is the nth input action associated with this machine (i.e. is associated with the nth value).

The output actions of the machine represent actions that read the value of the variable. In

a manner similar to the input actions, we designate the output actions with the notation

on

As an example, consider the machine defined by the following equations and shown in Fig-

ure 11:

V1 ≡ o1 .V1⊕ i1 .V1 ⊕ i2 .V2 ⊕ i3 .V3

V2 ≡ o2 .V2 ⊕ i1 .V1 ⊕ i2 .V2 ⊕ i3 .V3

V3 ≡ o3 .V3 ⊕ i1 .V1 ⊕ i2 .V2 ⊕ i3 .V3

This machine is suitable for representing a variable that can assume one of three possible

values. Each of the agents V1, V2 and V3 represents a value. From any given state the ma-

chine can be made to assume any other state (may represent any value) given the proper

input action (value to assume). Note that in any particular state, the only output action that

may occur (value that may be read) is the output action corresponding to the current state:

i.e. the value read is the value that the machine is currently representing.

Page 50

Revised 1/28/99

3.1.1 Value Machines are Mutually Orthogonal

Intuitively, we would expect that, in the absence of any other machines, operations per-

formed on one value machine would not affect the state of any other value machine. We

note that value machines, as we have defined them, are labeled entirely with primitive ac-

tions and do not have any inverse actions. We further note that we have required that all

primitive actions except for 1 appear on exactly one machine. Thus we have:

Lemma 2 All value machines are mutually orthogonal.

3.1.2 Value Machine Activation and Idling

In our initial description of the value machine, we neglected the activate and idle actions,

and the idle state. The complete value machine, with initial state V0, is given by the follow-

ing equations, and is illustrated in Figure 12.

V1

V2V3

i 2

i 2

o2

i 1

i 1

o1

i 3

i 3
o3

Figure 11 Incomplete Value Machine for 3-valued Variable

i 1

i 2i 3

Page 51

Revised 1/28/99

V0 ≡ α.V1 ⊕ α.V2 ⊕ α.V3

V1 ≡ o1 .V1 ⊕ i1 .V1 ⊕ i2 .V2 ⊕ i3 .V3 ⊕ ι.V0

V2 ≡ o2 .V2 ⊕ i1 .V1 ⊕ i2 .V2 ⊕ i3 .V3 ⊕ ι.V0

V3 ≡ o3 .V3 ⊕ i1 .V1 ⊕ i2 .V2 ⊕ i3 .V3 ⊕ ι.V0

Note that when the activate action α occurs, the initial state of the variable is non-determin-

istic. One could easily define an alternate semantics for variables in which the machine de-

terministically transitioned to a specified state upon activation. Also note that the idle ac-

tion ι places the machine back in its original state, and that there is no carryover of state

V1

V2V3

i 2

i 2

o2

i 1i 1

o1

i 3

i 3o3

Figure 12 Complete Value Machine for 3-valued Variable

i 1

i 2i 3

α
ι

V0

α
α

ι
ι

Page 52

Revised 1/28/99

information once the idle action has occurred. Thus the activate action is equivalent to the

creation of a new machine, and the idle action is equivalent to destroying a machine.

While the structure of these machines is simple, it is clear that using diagrams such as Fig-

ure 12 for each variable will lead to complexities in diagrams that show interactions be-

tween machines similar to those that are illustrated in Figure 9. Consequently, we shall use

our reduced Petri net notation, collapsing all of the value states into a single node in the

Petri net, and labeling this node with the abstract type of the variable. From this node we

shall generally show two types of transitions, one labeled with the in actions, and the other

labeled with the out actions, giving us the reduced Petri net of Figure 13.For clarity in

these diagrams we will show the state prior to activation and the state after idling as sepa-

rate states. This is without loss of generality, since there is no state information carried

through from idling to activation. In addition to the simplification shown here, we will fre-

quently use the Eaker notation to show the creation and destruction of tokens.

Figure 13 Reduced Petri Net Fragment Showing a Variable of Type V

iVo

V

α

ι

o i

α

ι

Page 53

Revised 1/28/99

3.1.3 Constants

A constant is simply a special case of a value machine with a single activate transition and

all of the input omitted. An example of a constant for the first value of our three-valued data

type is shown in Figure 14. Figure 15 shows a typed Petri net for a constant of type V.

The formal specification of this constant is given by:

V1

V2V3 o2

o1

o3

Figure 14 Value Machine for Constant “1”

α

ι

V0

Figure 15 Reduced Petri Net Fragment Showing a Constant of Type V

Vo

V

α

ι

Page 54

Revised 1/28/99

C0 ≡ α.C1

C1 ≡ o1.C1 ⊕ ι.C0

C2 ≡ o2.C2 ⊕ ι.C0

C3 ≡ o3.C3 ⊕ ι.C0

Note that the definitions of C2 and C3 are superfluous, since neither one is reachable from

the initial state. We show them primarily to clarify the relationship between value machines

and constant machines.

3.2 Interaction Machines

Value machines are machines that store values. Since they cannot interact with each other

(we have already shown them to be mutually orthogonal) we must introduce another class

of machine which we shall call interaction machines expressly for this purpose. In order

to fulfill their role, interaction machines must be labeled with the inverse actions. The only

new actions (non-inverse actions) that are introduced on an interaction machine are their

activate and idle actions. Thus the only orthogonality that is guaranteed between interaction

machines, and between interaction machines and value machines is that the activate and

idle actions are different on each machine, this stemming from our requirement that atomic

actions only appear on only one machine.

As we shall see, a significant property of interaction machines is that they never encode val-

ues in their internal state: the machines simply serve as catalysts for the transfer of values

from one value machine to another.

We shall adopt a naming convention for interaction machines that is intended to make our

machine algebra expressions more readable. In general, we will use the notation

Page 55

Revised 1/28/99

Fx
j→k

to designate an interaction machine, where F indicates kind of interaction machine this is

(for example, we will use = to designate an assignment machine), the subscript x uniquely

designates this machine (we may well have several assignment machines around), and
j→k

is an optional informal indication of which machines this one interacts with.

We will use interaction machines to model many operations on basic data types. For exam-

ple, the assignment statement of a basic data type is modeled as an interaction machine that

reads a value from a value machine and sets the value of a (usually different) value ma-

chine. A state diagram for a typical assignment machine =j→k
 for reading three-valued vari-

able Mj and setting three-valued variable Mk is shown in Figure 16. The subscripts indicate

the defining machines for each action.:

This machine is defined by the following expression:

=j→k≡ E0 ≡ α.(o1ji 1k.ι.E0 + o2ji 2k.ι.E0 + o3ji 3k.ι.E0)

α

ι
o1ji 1k

o2ji 2k

o3ji 3k

Figure 16 Assignment Machine =j→k

Page 56

Revised 1/28/99

where the activate and idle actions are unique to this machine. As before, we will more of-

ten use a typed Petri net representation for the assignment machine, such as that shown in

Figure 17.

Other operations on basic data types may also be modeled as interaction machines. For ex-

ample, relations may be modeled as interaction machines that read values from two value

machines and set the value of a boolean value machine to indicate whether the first two val-

ues belong to the relation. Note that this is an operational definition of a relation: while it

does implicitly define the relation itself, it actually tests membership in the relation. Arith-

metic and boolean operations are other examples of operations that may be modeled as in-

teraction machines.

3.2.1 Interaction Machines Model Primitive Operations

It is important to note that interaction machines are not the only means of modeling these

operations, but the alternative means of implementing these operations are behaviorally

distinct from (not behaviorally equivalent to) interaction machine models. For example, the

Figure 17 Typed Petri Net Showing an Assignment Machine =j→k

I A

•

α

ι

I A

i koji k oj

Page 57

Revised 1/28/99

assignment operation could be alternately modeled by copying the value from one machine

into a second machine (using an interaction machine), and from there copying the value

into the real destination machine (using another interaction machine). If the variables in-

volved kept track of the number of accesses that had occurred, then an observer would be

able to distinguish the two assignment operations because the second option could reach a

state in which the access counts on the variables are different, while the interaction machine

model could never reach such a state. Deciding which operations are primitive in this sense

is an important issue in modeling languages that will generate code for parallel machines.

3.3 Activation Machines

Thus far we have defined machines that store values and machines that facilitate the ex-

change of values between value machines. We now address the issue of coordinating the

activation and idling of these machines. To accomplish this, we define a special kind of in-

teraction machine that is labeled exclusively with the inverses of the activate and idle ac-

tions of other machines and possibly an activation and/or idle action of its own. We shall

call these machines activation machines. We shall place some further restrictions upon the

appearance of activation and idle actions: the inverses of activate and idle actions may only

appear on activation machines, and then on no more than one machine. As we shall see

shortly, the syntax will make clear exactly which machine these action inverses appear on.

As an example, let us suppose that we have two machines, Mi and Mj, and we wish to have

Mi go idle while activating Mj. To accomplish this, we compose these two machines with an

activation machine Ai→j
 that responds to both the idle action of Mi and the activate action

of Mj. This machine is defined by the following equation:

Ai→j ≡ A0 ≡ ιiαj.A0

Page 58

Revised 1/28/99

This kind of recursive expression arises frequently, and we will often want to give the ma-

chine as a term in a state algebra expression without having to define a constant such as A0

in the above expression. Accordingly, we will use the notation:

(ιiαj.)*

where (ιiαj.)* is a shorthand notation for ιiαj.ιiαj.ιiαj..... This machine is shown in Figure

18.:

While we could use our original notation and write the composition as:

(Mi | A
i→j | Mj)\{ ιi,αj}

this situation arises so frequently that we will use a shorthand notation as follows:

Mi; Mj ≡(Mi | A
i→j | Mj)\{ ιi,αj}

Here the semicolon indicates that the machines before and after are composed with an ac-

tivation machine that relates the idling of the machine before the semicolon to the activation

of the machine after the semicolon. The semicolon is associative (Appendix B Theorem

26).

Figure 18 Activation Machine Ai→j

ιiαj

Page 59

Revised 1/28/99

Just as we have removed the explicit representation of the activation machine from our

equational syntax, we also remove it from our reduced Petri net notation. Figure 19 shows

a partial reduced Petri net for both the unsimplified and simplified versions.

Another common activation construct is the simultaneous activation or termination of mul-

tiple machines. We might wish, for example, to activate machines Mj and Mk in parallel, ac-

tivating them as machine Ma terminates, and not starting machine Mb until both have termi-

nated. This would require two activation machines, Aa→jk relating the idling of machine Ma

to the activation of machines Mj and Mk, and Ajk→b relating the idling of machines M j and

Mk to the activation of machine Mb. Machine Aa→jk is defined by the equation:

Aa→jk ≡ (ιaαjαk.)*

and is shown in Figure 20.

1

2

Mj

ι

Mi

Mj

Mi

Mj

Figure 19 Reduced Petri Net Fragment for Composition Mi | A
i→j | Mj

a) without simplification a) with simplification

αια

Page 60

Revised 1/28/99

Again, while we could use our original notation and give the full composition of machines

as:

((Ma | Aa→jk | Mj | Mk)\{ ιa,αj,αk} | Ajk→b | Mb)\{ ιj,ιk,αb}

this situation arises frequently enough to warrant its own notation. We first introduce a no-

tation to indicate that two or more machines should be activated and idled in parallel:

 〈M1 | M2|...|Mn 〉 = ((αxα1α2...αn.)* |M1 | M2 |...|Mn| (ιxι1ι2...ιn.)*)\{ α1, α2,...,αn,ι1,ι2,...,ιn}

Note that this notation introduces new activate and idle actions (αx and ιx) for the compo-

sition. We may then use the semicolon notation as before:

Ma; 〈Mj | Mk〉; Mb

Figure 21 shows the partial typed Petri net for this composition. The composition is equiv-

alent to:

Ma | (ιaαx.)* | (αxαjαk.)* | Mj | Mk | (ιxιjιk.)* | (ιxαb.)* | Mb

Figure 20 Activation Machine A i→jk

ιiαjαk

Page 61

Revised 1/28/99

where we have omitted the restrictions for clarity. Theorem 25 (Appendix B) can be used

to show that ((ιaαx.)* | (αxαjαk.)*)\{ αx} = (ιaαjαk.)*, which means that the syntax “; 〈”

gives us the desired relationship between the idling of Ma and the activation of Mj and Mk.

3.4 Machine Algebra

We define a well-behaved machine to be any machine that has exactly one observable ac-

tivate action and whose initial action is always that unique activate action, and has exactly

one observable idle action and if this idle action occurs, the only observable action that may

follow is the activate action1.

We note that “;” and “〈〉” both preserve the well-behaved property:

1. Note that this does not imply that the machine must respond to the idle action in every state. This
is similar to Milner’s well-terminating property [Miln89] p. 173

Ma

Mb

Mj Mk

Figure 21 Partial Typed Petri Net of Composition Mi; 〈Mj | Mk〉 ; Ml

Page 62

Revised 1/28/99

Lemma 3

Let M be the set of well-behaved machines. Then:

M1, M2 ∈M ⇒ M1;M2∈M

M1, M2,...,Mn∈M ⇒ 〈M1| M2|...|Mn〉∈M

We adopt the convention that the “;” operator binds more tightly than (takes precedence

over) the | operator, and that 〈〉 binds more tightly than either.

Our machine algebra is then the system (M, =, ;, |, 〈〉), where M is the set of well-behaved

machines, = is behavioral equivalence, and ;, |, and 〈〉 are as defined above.

3.5 A simple example

Let us now construct a simple model of a single instance of the following program frag-

ment:

declare

a : integer := 2;

b : integer := 3;

c : integer;

begin

c := a + b;

end ;

Example 1 Simple Program Fragment

Page 63

Revised 1/28/99

If all of the declarations were to occur in parallel (which is not true in Ada) the program

fragment could translate into the following semantic expression, which is illustrated in Fig-

ure 22:

〈Va | Vb | Vc | C2 | C3 |=1
2→a ;=2

3→b ;〈Vt |+a,b→t;=3
t→c 〉〉 (12)

Note that the three value machines and the two constant machines are started in parallel,

along with the machine (=1
2→a ;=2

3→b ;〈Vt |+a,b→t;=3
t→c〉). This serial combination first ini-

tializes Va, then initializes Vb and then starts the machine parallel combination of a tempo-

rary value machine Vt and the series combination of the addition operation followed by the

assignment to Vc.

It is reasonable to ask why the temporary variable Vt is constrained to have the lifetime of

the two statements that interact with it. Why not use the following expression, in which the

temporary variable has the lifetime of the program:

〈Va | Vb | Vc | C2 | C3 | Vt |=1
2→a ;=2

3→b ; +a,b→t;=3
t→c 〉 (13)

The answer is that these two expressions are indeed equivalent, subject to a restriction on

the accessibility of Vt. We will now proceed to state a necessary theorem and then give the

derivation of (13) from (12).

3.5.1 Parallelization Theorem

We wish to consider the circumstances under which the sequencing of machines in a com-

position may be altered. Consider the following abstracted model of a program or subpro-

gram:

〈Va | Vb | Mp; Mq ; Mr ; Ms〉\S

Page 64

Revised 1/28/99

Va

Vb

Vc

C2

C3

Vt

=
out 2 in a

=
out 3 in b

+
out aout bin t

=

in c

Figure 22 Reduced Petri Net of Example 1

out t

Page 65

Revised 1/28/99

where S = Sort(Ma) ∪ Sort(Ma) ∪ Sort(Mb) ∪ Sort(Mb) ∪ Sort(Mq) ∪ Sort(Mq) ∪ Sort(Mr)

∪ Sort(Mr), Va and Vb are local variables of the program, Mp copies actual parameter values

into the local variables, Mq and Mr are machines that do the actual work of the subprogram

by modifying the local variables, and Ms copies the final values out into their target desti-

nations. The restriction \S simply says that the internal workings of the program are not

visible from outside the program (the variables are hidden and the machines that do the

work cannot communicate with any machines outside of the program). The sequencing Mp;

Mq ; Mr ; Ms says that the actual parameter values are copied in, then Mq does its work, then

Mr does its work, and finally Ms copies the results back out of the program.

Now it seems intuitive that if the variables cannot interact with each other, and the ma-

chines that do the work (Mq and Mr) cannot interact with each other, and each working ma-

chine can only interact with one of the variables, then it should not matter which order Mq

and Mr do their work. In fact, they could even operate in parallel! This is exactly what the

parallelization theorem establishes:

Theorem 4 Parallelization Theorem

Ma ⊥ Mb, Ma ⊥ Mr, Mb ⊥ Mq, Mq ⊥ Mr⇒

 〈Ma | Mb | Mp ; Mq ; Mr ; Ms〉\S =

〈Ma | Mb | Mp ;〈Mq | Mr〉; Ms〉\S =

〈Ma | Mb | Mp ; Mr ; Mq ; Ms〉\S

This is a valuable result, since it shows how to take a serial program and convert it into an

equivalent parallel program with no analysis beyond simply determining the orthogonality

Page 66

Revised 1/28/99

(independence) of the component parts of the program. The proof of this theorem is in Ap-

pendix B section B.1 on page 160.

3.5.2 Change of Scope Theorem

Somewhat similar to the parallelization problem is the related change of scope theorem.

Consider the following configuration of machines:

〈Ma ;〈Mb | Vx〉; Mc〉\S

where S = Sort(Vx). The situation we are modeling here is one in which Vx is a local vari-

able used by Mb only. If Ma and Mc cannot interact with Vx and Vx is hidden from the outside,

then it seems reasonable that the lifetime of Vx could be extended, yielding a behaviorally

equivalent configuration:

〈Vx | Ma ;Mb; Mc〉\S

This leads to the following theorem:

Theorem 5 Change of Scope Theorem

Ma ⊥ Mx, Mc ⊥ Mx⇒

〈Ma ;〈Mb | Mx〉; Mc〉\S=〈Mx | Ma ;Mb; Mc〉\S

where S = Sort(MX). The proof of this theorem is in Appendix B section B.2 on page 168.

We now return to our example of (12). We now wish to show that the scope of the local

variable Vt can be changed without affecting the observable behavior of the expression.

This example actually contains an omission: the temporary variable Vt is not visible outside

Page 67

Revised 1/28/99

of the assignment statement. Accordingly, we add the restriction hiding the existence of the

temporary variable V:

〈Va | Vb | Vc | C2 | C3 |=1
2→a ;=2

3→b ;〈Vt |+a,b→t;=3
t→c 〉\Sort(Vt)〉

Next, we must show that some of the machines are orthogonal. By definition, all of the vari-

ables and constants are orthogonal. We also note that = 1
2→a has only the actions of C2 and

Va, and =2
3→b has only the actions of C3 and Vb. We thus have:

Vt ⊥=1
2→a and Vt ⊥=2

3→b

These orthogonality observations, in conjunction with Appendix A (65) and the definition

of ; allow us to change the scope of restriction:

〈Va | Vb | Vc | C2 | C3 |(=1
2→a ;=2

3→b ;〈Vt |+a,b→t;=3
t→c 〉)\Sort(Vt)〉

Now we apply Theorem 5, letting Ma = =1
2→a ;=2

3→b , Mb = +a,b→t;=3
t→c , Mx=Vt and Mc=0 to

get:

〈Va | Vb | Vc | C2 | C3 |(Vt | = 1
2→a ;=2

3→b ;+a,b→t;=3
t→c)\Sort(Vt)〉

Again applying our orthogonality observations and Appendix A (65) we get our desired re-

sult:

〈Va | Vb | Vc | C2 | C3 |Vt | = 1
2→a ;=2

3→b ;+a,b→t;=3
t→c 〉\Sort(Vt)

Page 68

Revised 1/28/99

4.0 Visibility

Determining the visibility of variables, functions and types at various points in a program

can be a difficult and complicated task, especially in languages as complex as Ada. While

intuition will successfully guide a programmer in a simple block structured language, con-

cepts such as separate specifications and implementation in Ada and Modula-2, and use

clauses in Ada make it increasingly difficult for the programmer to build and apply a con-

ceptually simple model of visibility.

In this chapter we examine the process of determining visibility, and propose the use of a

modified set union known as a masking union as a means of formalizing visibility rules. In

contrast with the traditional ad-hoc rule based approach to defining visibility, this approach

has the advantage of being both conceptually simple and mathematically rigorous. We be-

gin by using masking unions to model visibility in simple block structures, and then pro-

ceed to analyze increasingly complex visibility computations, including considerations of

declaration ordering and inter-dependency. We observe that the resulting models have the

additional advantage of providing diagnostic information that can be used to explain, in a

meaningful way, why certain program elements are not visible at specific places in the pro-

gram. In [Brow90] we have considered the more complex visibility problems associated

with the separation of specifications and implementations in Ada, and provide an analysis

of library-level visibility rules in.

While all examples are drawn from the Ada programming language, no knowledge of the

Ada language is assumed. Initial examples simply use blocks with declarations, which

should be readily understandable to readers not familiar with Ada. As other Ada features

are introduced, they are defined and explained.

Page 69

Revised 1/28/99

4.1 Declarations and References

In the previous chapters we have laid the groundwork for modeling the semantics of a pro-

gramming language in terms of machines. The meaning of an identifier in a program is a

machine. We define an environment E:Ide×M to be a relation between identifiers and ma-

chines. We note that this environment is suitable for mapping identifiers into both machine

instances and types if we use the “defining machine” approach to machine types.

A declaration is an entry in an environment relation, mapping an identifier to a machine1.

A reference is the use of an identifier to locate the appropriate declaration in an environ-

ment relation and thus locate the machine that is being referenced2. Each occurrence of an

identifier in a program is either part of a new declaration or it is part of a reference. Con-

sider the program in Example 2. In this example, we observe a single explicit declaration3

of a variable named a, and a number of references: one to integer in the declaration itself;

another to a in the assignment statement; and a third to the literal 1 in the assignment state-

ment. As we shall see later when we complete our semantics, := will itself be viewed as a

reference to an assignment operator.

X: declare

a : integer; -- a declaration of “a”

begin

a := 1; -- a reference to the “a”

end X;

Example 2 Declarations and References

1. Note that this allows more than one identifier to be associated with the same machine.
2. As we shall soon see, there may be more than one entry in the relation with the same identifier
3. Explicit in the sense that there is an explicit declaration in the code. We shall see later that some
machines are implicitly declared

Page 70

Revised 1/28/99

Taking this perspective of a program, an interesting problem is the determination of which

declaration a particular reference actually refers to. This problem can, in itself, be divided

into two sub-problems: one is the determination of which declarations are visible at a given

point in the program (we call this set of visible declarations the direct environment); the

other is, of the declarations visible at this point, which is the one that is actually being re-

ferred to. In this thesis we will confine our investigation to the computation of visibility,

and leave the formalization of how a reference is selected for future work.

4.2 Homographs and Overload Resolution

Most programming languages place some restrictions on the declarations that are allowed

to co-exist in the same direct environment. Most languages do not allow the program of Ex-

ample 3, in which two variables of the same name, a, but of different types, appear in block

X. Similarly, the dual declarations of b are not allowed. Note that despite the syntactic iden-

tity of the two declarations of b, they are two distinct declarations that happen to associate

two different machines of the same type with the same identifier. Maintaining these sepa-

rate declarations is an essential part of the visibility model that we will be developing.

X: declare

a : integer;

a : boolean;

b : boolean;

b : boolean;

begin

b := true; -- an ambiguous reference to “b”

end X;

Example 3 Ambiguous References

Page 71

Revised 1/28/99

On the other hand, most languages support the notion of names being re-used in nested

blocks, as in Example 4.

X: declare

a : integer;

begin

Y: declare

a : boolean;

begin

a := 1; -- which declaration does this refer to?

end ;

end ;

Example 4 Re-use of Names

Under certain circumstances, languages may allow the re-use of a name within the same

direct environment, as in Example 5. In this example, two functions are declared, both with

the name f . When a situation like this occurs, we say that the name is overloaded, or has

more than one declaration associated with it. When a reference to f occurs, the correct ma-

chine must be selected from among the declarations associating machines with f . This pro-

cess of selecting the actually referenced machine is known as overload resolution. We shall

leave the formalization of overload resolution in our model an open problem in this thesis.

X: declare

a : integer;

function f return integer is

begin

return 1;

end f;

function f return boolean is

Page 72

Revised 1/28/99

begin

return true;

end f;

begin

a := f; -- overload resolution needed to select “f”

end ;

Example 5 Overload Resolution

How do we characterize declarations so that we know when overloading is allowed and

when it is not? The answer is based upon the manner in which the declarations can be dis-

tinguished from each other. If two declarations, d1 and d2, are never distinguishable, based

upon some set of information about the declarations, we call them homographs, and define

a corresponding relation H(d1, d2). We note that the homograph relation may be an arbi-

trary relation, but we also note that an understanding of the structure of this relation is an

essential part of understanding visibility. Thus it is in the interest of both the language de-

signer and the practicing programmer to keep the rules for defining this relation as simple

as possible.

While the exact definition of homograph will vary from language to language, we assume

that such a definition can be given for each language. In languages that do not allow over-

loading, two declarations are homographs if they share the same name. In languages

that do allow overloading, generally overloading is only allowed for machines that play cer-

tain roles in the language. In Ada, for example, overloading is allowed for machines used

as subprograms, but not for machines used as variables. The implication is that declarations

in such languages must be extended to contain information about the role that the machine

is playing. In such languages we would need to use an extended environment

Page 73

Revised 1/28/99

E:Ide×M×Role where Role indicates the role that the machine plays in the language (vari-

able, function, type, etc.).

Languages frequently differ in the distinguishability criteria that they use, and hence differ

in their definitions of homograph. Some languages, like Ada, even use different criteria in

different situations within the same program! For example, Ada does not allow subpro-

grams that have the same parameter and return type profile to be declared in the same con-

text, but it does allow two such declarations to be brought into the same environment via

use clauses. Furthermore, the overload resolution process, which selects the appropriate

declaration, is allowed to also use any formal parameter names that happen to be used in

the subprogram call to differentiate and select a single declaration.

As a result, in order to fully model Ada visibility, we shall need three homograph defini-

tions: the main one, which will be used in most visibility computations, considers subpro-

grams to be homographs if their names and parameter and result type profiles match (their

associated machines have the same state type); the second, which we shall use for defining

use clause semantics, considers all subprograms to be differentiable, even if they have the

same name and type profiles; and the third, which is only required to describe the overload

resolution process, considers subprograms to be homographs if their names, parameter and

result type profiles and formal parameter names match.

We thus have the following basic definition of an Ada Homograph [LRM 8.3(15)] for use

in visibility computations (here we formalize distinguishability of declarations declared in

the same environment - the second variant of the homograph declaration will be provided

in a later chapter for the use clause case). Two declarations are Ada Homographs of each

other if they have the same identifier and either:

Page 74

Revised 1/28/99

1 Overloading is not allowed for at least one of the pair (based on roles); or

2 Overloading is allowed for both, but they are indistinguishable on the basis of

parameter and return types.

We note that the homograph definition for overload resolution (which we have not formally

given) will require the names of the parameters, and that this information is not present

even in our extended environment relation. We thus define an Ada environment

E:Ide×M×Role×ParameterNameList where ParameterNameList is simply an ordered

list of formal parameter names.

We shall, in the remainder of this thesis, use this Ada definition of homograph in our ex-

amples. Since we are not going to go into the details of overload resolution, we shall omit

the ParameterNameList from our formal descriptions of environments. Languages with

other characteristics can be modeled by suitably changing the definition of homograph and

environment.

We note that the relation defined by the Ada definition of homograph is reflexive and sym-

metric, but is not transitive. Consider the following Ada declarations:

a : integer;

procedure a (b:integer);

procedure a (b:boolean);

The first declaration is a homograph of both the second and the third, but the two procedure

declarations are not homographs of each other. If we were to relax the restriction that over-

loading is only allowed for some types of declarations, and allow all declarations to be

overloadable, then we would get a homograph definition that leads to an equivalence rela-

Page 75

Revised 1/28/99

tion, i.e. a relation that is reflexive, transitive, and symmetric, and a corresponding simpli-

fication in understanding visibility.

4.3 Environments and the Masking Union

We now return to our primary purpose, which is to describe the visibility of declarations

(associations of names with machines) at various points in the program. In a typical pro-

gramming language we will find basic groupings of declarations and executable code,

which we shall call a declarative block. Each declarative block is actually the definition

of a machine in our model (usually the prototype machine of a state type). This machine

is actually just a composition of the machines defined by its declarations and executable

statements. The defined machine is then associated with its name and placed in an environ-

ment for later reference. The machines defined by the declarations will themselves be

placed in environments, either for reference within this machine or, in some cases, for ref-

erence by other machines.

There are at least two environments that are of major interest with respect to a declarative

block: the set of declarations that are visible in the executable body of the block, known as

the direct environment (DE); and the set of declarations that occurred within the block,

known as the local declarations (LD).

There are, as we shall soon see, a number of environments in addition to these two associ-

ated with each declarative block. We formalize the relationship between declarative blocks

ad environments by defining a scope S:M×E×Role to be a relation associating machines

M with environments E and the roles that the environments play with respect to those ma-

chines. We shall soon see that defining visibility is basically the process of defining these

environments and their relationships with machines. We shall use the notation M:R to des-

Page 76

Revised 1/28/99

ignate the environments playing role R with respect to machine M. Thus X:DE would be

the direct environment associated with machine X.

Consider the nested blocks of Example 6, and the task of determining block Y’s direct en-

vironment. If we consider block Y’s local declarations Y:LD , and block X’s direct environ-

ment X:DE, one might be tempted to conclude that block Y’s direct environment Y:DE is

simply the union of block Y’s local declarations and block X’s direct environment:

Y:DE = Y:LD ∪ X:DE (14)

X: declare

a : integer;

b : boolean;

c : integer;

begin

Y: declare

d : boolean;

e : integer;

f : boolean;

begin

a := 1;

end Y;

end Y;

Example 6 Basic Nested Blocks

While the union provides a useful approximation to what is actually visible in block Y, it

does not provide the correct result for Example 4, in which only the declaration of a that

occurred in block Y is visible to the assignment statement: the declaration of a that occurred

Page 77

Revised 1/28/99

in block X is hidden. With a simple set union, both would be visible. We thus need to mod-

ify our notion of set union in order to adequately model visibility computations.

We now proceed to define a variation of a set union known as a masking union, so called

because declarations that occur in one of its source sets will “mask” the presence of decla-

rations occurring in the other source set. We shall use the symbol ∪
m to designate this op-

erator.

Given two sets, A and B, the masking union of these sets

C = A ∪m B

is defined by:

C = {a∈Α} ∪ {b ∈ B|∀a∈Α ¬H(a, b)} (15)

where H is the homograph relation defined in section 4.2 on page 70.

Appendix 1 describes some of the properties of this operator and some basic theorems.

4.4 Basic Visibility Computations

Utilizing masking unions, we can now complete the model of visibility computations in our

simple block structure. For each declarative block, we have

X:DE = X:LD ∪m X-1:DE (16)

where X-1 denotes the “parent” of X, i.e. the declarative block in which the declaration of

X occurred.

For example, consider the program fragment of Example 7:

Page 78

Revised 1/28/99

X: declare

a : integer;

d : integer;

begin

Y: declare

a : integer;

b : integer;

begin

Z: declare

b : integer;

c : integer;

begin

end Z;

end Y;

end X;

Example 7 Nested Blocks

We first note that the keyword declare marks the beginning of each new declarative re-

gion, and the region ends with the keyword end . The keyword begin simply serves to sep-

arate the declarations from the executable portion of the block. It is easy to see that the di-

rect environments of the blocks are as follows (omitting the roles and parameter names

from the relations, and ignoring pre-defined declarations other than integer):

X-1:DE = {(X,X), (integer ,Int)}

X:DE = {(a,a∈X), (d,d∈X), (X,X), (Y,Y), (integer ,Int)}

Y:DE = {(a,a∈Y), (b,b∈Y), (d,d∈X), (X,X), (Y,Y), (Z,Z), (integer ,Int)}

Page 79

Revised 1/28/99

Z:DE = {(a,a∈Y), (b,b∈Z), (c ,c∈Z), (d,d∈X), (X,X), (Y,Y), (Z,Z),

(integer ,Int)}

where we use the notation a∈X to disambiguate a, indicating that we want the a that is a

part of X. The notion of “being a part of X” will become clear in the next chapter. For now,

it is sufficient to think of it as meaning “was declared in X.” X-1:DE represents the direct

environment of the block in which X was declared.

4.4.1 Compilation Diagnostic Aids

It is not unusual for a programming language to have a restriction that two declarations oc-

curring in the same declarative region are not allowed to be homographs of each other. Our

model is flexible enough to allow homographs to be declared in the same declarative region

(recall that these declarations always maintain their separate identities). In addition, our

model provides a convenient means of checking to see if the rule regarding homographs

has been violated for a declaration d ∈ LD :

 ∀d′ ∈ LD , d ≠ d′, ¬H(d, d′)

If this term is false, then there is a violation of the restriction. If we assume a constant com-

parison time, then the worst case complexity of this operation is O(n2), where n is the num-

ber of declarations. However, if we consider that, for most definitions of homograph, name

equivalence is a major part of the homograph predicate (declarations with different names

will never be homographs of each other), the average complexity of the check can be re-

duced by indexing LD by the names of the declarations, and only applying the homograph

check to those declarations with the same name. This yields an average complexity of

, where m is the average number of declarations with the sameO n
n
m
---- 

 log n m×()+ 
 

Page 80

Revised 1/28/99

name, and n is the total number of declarations in the set. If hashing is used, the first term

reduces to a constant, and the resulting complexity is Not only does this give a

boolean result, but it points out specifically which declarations are homographs of the cur-

rent declaration, thus providing the basis for meaningful compilation diagnostic messages.

4.5 Visibility and the Ordering of Declarations

The ordering of the declarations within a declarative region can have an effect upon the

meaning of references within a declarative region. In the following we examine three pos-

sible semantics for visibility within the declarative regions: letrec (let recursive), let and

let*.

4.5.1 Letrec (Let Recursive) Visibility Semantics

Letrec, or let recursive, semantics indicates that any declaration in a context may refer to

any other declaration in the region, including itself – hence the reference to recursion. This

was the semantics given in Section 4.4, where we noted that the ordering of declarations

within a block was irrelevant. With this semantics, the programs of Example 8 and Example

9 have identical semantics, with Y:DE = {(a,a∈Y), (b,b∈Y), (X,X), (Y,Y), (inte-

ger ,Int)} in both cases, and all references within the block Y seek to locate their decla-

rations in this environment. This is the semantics of the scheme letrec construct [Rees86].

All of the declarations in a given block are added to the environment before any of the ref-

erences are evaluated, and any declaration is allowed to reference any other declaration, in-

cluding itself. Thus, in both examples, the variable b is initialized to the value of 4.

X: declare

a : integer := 3;

begin

O n m×()

Page 81

Revised 1/28/99

Y: declare

b : integer := a; -- which “a” does this refer to?

a : integer := 4;

begin

a := 1;

end Y;

end X;

Example 8 Relative Ordering of Declarations

X: declare

a : integer := 3;

begin

Y: declare

a : integer := 4;

b : integer := a; -- which “a” does this refer to?

begin

a := 1;

end Y;

end X;

Example 9 Relative Ordering of Declarations

4.5.2 Let Visibility Semantics

A second alternative for visibility semantics is that associated with the let construct in Lisp

[Stee84] and Scheme. In this semantics the direct environment computation is the same as

for the letrec construct, but references that occur as part of declarations seek to locate the

referenced declarations in the direct environment of the next outer construct (X:DE for dec-

larations in Y), while references that occur after the declarative region (in the set of state-

ments) locate their referenced declarations in the direct environment of the block in which

Page 82

Revised 1/28/99

they occur (Y:DE for statements in Y). With this semantics, the declarations of b in both

examples would be initialized to the value of 3.

4.5.3 Let* Visibility Semantics

A third alternative is the visibility semantics associated with the let* constructs in Lisp and

Scheme. In this semantics, each declaration introduces a new direct environment. The ref-

erences that occur in a given declaration locate the referenced items in the direct environ-

ment of the previous declaration (or some initial direct environment DE0, if this is the first

declaration in the block). References within the set of statements locate their referenced

declarations in the direct environment associated with the last declaration. With this seman-

tics, the declaration of b in Example 8 would be initialized to the value of 3, whereas the

declaration of b in Example 9 would be initialized to the value of 4.

The direct environment associated with each declaration can be more formally described as

follows. Given:

a an ordered set LD of k declarations {d1, d2,..., dk}

b an initial direct environment DE0

We might be tempted to define the direct environment associated with each declaration as:

DEi = {di}
∪
m DEi-1 (17)

We would then like to be able to make the simplifying assumption that

DE = DEk = LD ∪m DE0 (18)

Page 83

Revised 1/28/99

where k is the last declaration. Unfortunately, this is not the case: if H(di, dj) for some i <

ϕ, then DEk will contain dj but not di if computed using (17), and will contain both if com-

puted using (18).

For a language that does not allow homographs to be declared in the same declarative re-

gion, (18) gives the correct result for correct programs. But to accommodate languages

whose semantics allow homographs in LD , we provide a different formulation of the direct

environment DEi. Given:

a an ordered set LD of k declarations {d1, d2,..., dk}

b an initial direct environment DE0

c an empty set LD 0

We define a partial subset of LD , LD i, as follows:

LD i = {di} ∪ LD i-1 = {d1, d2,..., di} (19)

 and the direct environment associated with each declaration:

DEi = LD i
∪
m DEi-1 (20)

It is now a straightforward exercise to show that (18) follows (Appendix C Theorem 33).

Note that for completeness, we must include the implicit declarations of named blocks as

well as well as the explicit declarations from the declarative region in the set LD .

Page 84

Revised 1/28/99

4.6 Visibility Within a Declaration

4.6.1 Let* Semantics

While discussing let* semantics in the previous section, we did not discuss the origin of

DE0. The selection of this set is important, for it affects the visibility of a declaration (a

function, for example) within itself. We must first extend our notation to indicate which de-

clarative region that each set of declarations is associated with. We shall use a subscript to

indicate which specific direct environment belonging to that declarative block we are refer-

ring to. For example, X:DEY would be the direct environment belonging to declarative re-

gion X that is associated with the declaration of Y in module X.

Consider the program given in example 2-5. If we let factorial :DE0 = X:DEb, where

X:DEb represents the incremental direct environment in X just after the declaration of b,

then factorial is not visible within itself. On the other hand, if we let factori-

al :DE0 = X:DEfactorial then factorial is visible within itself.

X: declare

b : integer;

function factorial(a:integer) return integer is

begin

if a = 0 then

return 1

else

return a * factorial(a-1);

end if;

end factorial;

Page 85

Revised 1/28/99

begin

b := factorial(17);

end X;

Example 10 Recursive Reference Nested Within a Declaration

Another situation that warrants consideration is depicted in Example 11. In the declaration

of a that occurs within the block Y, there is also a reference to a that is part of the initial-

ization. In which direct environment do we attempt to locate the declaration referred to by

the reference to a? Two obvious choices are analogous to those that we used for DE0 above:

X:DEa or X:DEY . A third possibility, and the one used in Ada, dictates that within the dec-

laration, the name of the item being declared is not allowed to be used at all. To model

this, we introduce a new environment X:DE′Y for use within the declaration that is identical

to X:DEY save that it does not contain any declarations with the identifier “a”:

X:DE′Y = {d ∈ X:DEY | identifier(d) ≠ “a”} (21)

It is in this environment that we seek to resolve references that occur within the declaration.

Note that this alternative is also a third possible candidate for DE0.

X: declare

a : integer := 4;

begin

Y: declare

a : integer := a; -- illegal Ada!

 -- where does the initial value

 -- come from?

begin

Page 86

Revised 1/28/99

null;

end ;

end ;

Example 11 Recursive Reference Not Nested Within a Declaration

4.6.2 Compilation Diagnostic Aids

The approach used in (21) has the disadvantage that if a reference fails to locate the desired

declaration in X:DE′Y it is impossible to determine just by looking at X:DE′Y whether a dec-

laration was not found because there was no visible declaration or because the otherwise

visible declaration was filtered out because of a name conflict. An alternative approach is:

X:DE′Y = {(a,0)} ∪
m X:DEY (22)

where (a,0) is a “fake” declaration that is a homograph of anything named “a”. In this way,

references that resolve to a dummy declaration will indicate name masking, while referenc-

es that find nothing will indicate missing declarations.

4.6.3 Letrec semantics - Fully Recursive Referencing

In the letrec semantics of Scheme, the direct environment of the block containing the dec-

laration serves as the source for all references that occur within the block, regardless of lo-

cation. In Example 11, since the reference to a occurs immediately within the body of Y,

we look in Y:DE to locate the declaration that is being referred to, which in this case is

(a,a∈Y). We thus have a recursive reference, which, in this particular case, is undesirable.

Note that this style of visibility computation places absolutely no restrictions on references

that occur within declarations.

Page 87

Revised 1/28/99

This semantics implies that machines are visible to the references that define the machines,

i.e. the machines may be recursively defined. For example, since (Y,Y)∈X:LD , then

(Y,Y)∈X:DE (by (16)), and (Y,Y)∈Y:DE (also by (16)) unless Y:LD contains a homo-

graph of (Y,Y).

4.6.4 Let semantics - Non-recursive referencing

In let semantics, the new declaration of a is not considered to exist until the end of the de-

clarative region in which a occurs. Thus, in example 2-6, we would look in X:DE to locate

the referenced declaration, and thus locate (a,a∈X). This semantics also implies that dec-

larations are not visible to references nested within themselves.

4.7 Ada Declarative Region Visibility (partial)

The visibility rules of Ada [LRM] utilize the name restricted referencing of (22) within dec-

larations that do not, in turn, contain other declarations. For declarations that do contain

other declarations, there is some variation in the computation of DE0. For a package spec-

ification, generic package specification or body Y, Y:DE0 = X:DEY, where Y is a local dec-

laration of X. For any other specification Y, Y:DE0 = (a,0) ∪m X:DEY. Note that the de-

clarative region containing formal parameter specifications is actually part of a specifica-

tion, even though it might be contained in a subprogram body declaration, and all

references in this region must use the name restricted referencing of (22).

4.8 Referencing Declarations from Other Scopes

In the previous sections, we have associated a distinguished pair of environments, LD and

DE, with each block. We shall now use these environments to describe Ada’s selected

Page 88

Revised 1/28/99

component or “dot” notation. This notation is intended to make it possible to reference a

declaration that might not otherwise be visible or unambiguous at a particular point in the

program.

The definition of the dot notation in our model is as follows: Given the expression X.Y oc-

curring in context Z, if there is a unique (X,X) in Z’s direct environment, and a unique (Y,Y)

in X’s local declaration set, then Y is the designated declaration. More formally,

if ∃(X,X) ∈ Z:DE and X is uniquely designated (there are no other declarations

with the identifier X), and

∃(Y,Y) ∈ X:LD and Y is uniquely designated

then Y is the designated declaration.

To illustrate this, consider the program of Example 12, in which we find the following sets:

X:LD = {(a,a∈X), (a,Y)}

X:DE = {(a,a∈X), (a,X), (a,Y), (integer ,Int)}

Y:LD = {(a,a∈Y)}

Y:DE = {(a,a∈Y), (a,X), (a,Y), (integer ,Int)}

Note that these sets have the same contents regardless of which declaration semantics is

used.

X: declare

a : integer;

begin

Page 89

Revised 1/28/99

Y: declare

a : integer;

begin

X.a := 1;

Y.a := 2;

X.Y.a := 3;

X.X.a := 4; -- error: fails to resolve a

end Y;

end X;

Example 12 Referencing Declarations from Other Scopes

In the first assignment statement, we have the expression X.a , with semantics “find X in

Y:DE.” X must designate a block (we will generalize this later), and we look for a in X:LD ,

thus finding a∈X. In the second assignment statement, we look for Y in Y:DE, and then

look for a in Y:LD , thus finding a∈Y. In the third statement, we first find X in Y:DE,

then find Y in X:LD , and finally find a in Y:LD , thus locating a∈Y. In the fourth and final

statement, we have a computation that fails: we can resolve the first reference to X in Y:DE,

but there is no X in X:LD . Thus the reference in this statement is illegal.

While this explanation of dot notation is intuitively simple, it must be extended in order to

represent Ada’s use of the construct. Consider the program fragment in Example 13.

X: declare

a : integer;

package Y is

a : integer :=1;

b : integer := X.a;

c : integer := X.Y.a;

Page 90

Revised 1/28/99

d : integer := X.Z.a; -- error: fails to resolve in Ada

end Y;

package Z is

a : integer;

b : integer := X.a;

c : integer := X.Y.a;

d : integer := X.Z.a;

end Z;

begin

null;

end X;

Example 13 Declaration Ordering Affects Dot References in Ada

Here we have used Ada packages, which, for the purpose of this example, can be consid-

ered to be blocks whose declared machines continue to exist beyond the execution of the

code within the blocks. In this example, X:LD contains both Y and Z, but the reference to

Z within Y is illegal in Ada, since Z was not declared (sequentially) until after the declara-

tion of Y. (Note also that if Y and Z had been blocks, the references to X’s declarations

would not have been legal, since they do not persist beyond the scope of the block.) Our

present interpretation of the dot notation would successfully locate Z, and is thus inconsis-

tent with the Ada interpretation. Rather than looking in X:LD for Z, we should have looked

in X:LDY, which is the incremental local declaration set that existed immediately after the

declaration of Y.

This solution must be generalized to deal with a lexical ancestor, no matter how far re-

moved, anywhere within the dot notation. We begin by defining a new relation, P(A, B),

the parent relation, where A and B are both machines, and B∈A. We next define the or-

Page 91

Revised 1/28/99

dered set of ancestors of B as Ancestors(A) = {d1, d2,... dk | dk = B and ∀i P(di, di+1)}. We

now consider a first approximation to Ada dot notation:Given the expression X.Y occur-

ring in context Z, if there is a unique X (either found as (X,X) in Z’s direct environment if

X is the first element in a dot expression, or located by a previous evaluation of the portion

of the dot expression to the left of the dot being currently considered), then there are four

cases:

1 Case 1: X=Z (X is the current context): if there is a unique (Y,Y) in the current

X:LD , then Y is the designated machine.

2 Case 2: X is an ancestor of Z (X ∈ Ancestors(Z)): let i be the position of X in

Ancestors(Z). If there is a unique (Y,Y) ∈ X:LDdi+1
, then Y is the designated

machine, where di+1 is the immediate descendant of X that is also an ancestor

of Z.

3 Case 3: X is not an ancestor of Z (X ∉ Ancestors(Z)) and X is a parallel ma-

chine with respect to the current context: if ∃(Y,Y) ∈ X:LD and Y is uniquely

designated (it is the only machine associated with Y in this environment) then Y

is the designated declaration. Typical examples of parallel machines are vari-

ables, packages and task instances. An example of a non-parallel machine is a

subprogram: its component elements do not exist until the subprogram is called,

and do not persist past the end of the subprogram’s execution. The only time

that these elements may be referenced is during the execution of the subpro-

gram, and this is covered in case 1 or 2.

Page 92

Revised 1/28/99

4 Case 4: X is not an ancestor of Z (X ∉ Ancestors(Z)) and X is not a parallel

machine: then none of the declarations of X are parallel, and the reference to Y

is meaningless.

For an expression involving multiple dots, such as A.B.C , the expression is evaluated left-

to-right, using the algorithm above: first A.B is resolved, then the resulting B is used in re-

solving B.C .

Page 93 Revised 1/28/99

5.0 Applying Constructive Semantics

The intent of constructive semantics is to provide an interpretation of a program as the spec-

ification for an abstract state machine. We are now in a position to specify the constructive

semantics of a programming language using the results of the earlier chapters. The style of

this semantics will be denotational, showing how each construct in the language can be in-

terpreted as a machine that is defined by the composition of the denotations of its compo-

nent parts.

A programming language defines a number of basic data types and operations as given el-

ements of the language. We assume that the machines that these data types and operations

denote are given as part of the formal semantics of the language.

We will take a subset of Ada as the basis for showing how a constructive semantics for a

programming language can be given. This subset includes many of the language features

of Ada, including declarative blocks, composite types and exception handling. Packages

and tasks have been omitted because they differ little from declarative blocks in their se-

mantics except for their extremely complex visibility computation rules, which are ana-

lyzed and modeled in [Brow90].

In giving the semantics for each construct, we will not provide a complete Ada semantic,

but rather explore a variety of semantics that might be given to the construct. In most cases,

one of the semantics that we will give closely approximates the actual Ada semantics.

5.1 Elaboration: From Programs to Machines

If a program is the specification of a state machine, somewhere along the line this specifi-

cation must be converted into an actual machine. While one might be initially tempted to

say that this is the role of the compiler, the compiler in reality simply generates a series of

Page 94

Revised 1/28/99

binary numbers in a file that represent the initial state of some other machine, namely the

computer in which the program will be executed.

Converting a specification into a state machine is not necessarily a one step process. The

obvious counter-example is the interpreter, which does the conversion piecemeal. But even

a compiled language may not be convertible into a complete state machine at load time. For

example, some Ada data type declarations (which we shall be interpreting as definitions of

machine types) are allowed to depend upon values computed previously in the program.

Thus the machines defined by these type declarations are not even fully defined until part

of the program has been executed.

In providing a semantics for a program, we are not concerned about the details of how a

compiler converts a program into a state machine. Our concern is to specify the behavior

of that machine after conversion. However, we shall have frequent occasion to refer to this

process of conversion, and thus, borrowing a term from Ada, we shall call this process elab-

oration. In fact, the method of specifying our semantics is simply to give a formal defini-

tion of elaboration.

5.2 Concepts of Type

The term type frequently brings to mind differing and possibly inconsistent concepts. The

three dominant concepts seem to be that a type is either a set of values1, a behavioral (in-

terface) specification, or an implementation specification. Our semantics provides a per-

spective from which we see that these three concepts are not inconsistent, and are in fact

closely related to one another in a very formal way.

1. Or a representative of the set, as is the case in Denotational Semantics

Page 95

Revised 1/28/99

One simplifying factor resulting from the state machine perspective is that values, per se,

do not exist in the state machine model! The closest that we can come to the concept of a

value belonging to a set of values is the current state of a value machine capable of encoding

the values from the set. But there is an important aspect of the value concept that must be

considered: the notion of equivalence of values. This concept is provided by the state type

definition of section 2.5. If we assume that the machines of the state type are value ma-

chines, then the isomorphic relationship between the machines (actually between the ac-

tions of one machine and the actions of another) enables us to establish the equivalence of

values being represented by different machines (we will later discuss a machine that actu-

ally tests membership in this relation).

Now when we are working with (interacting with) a value machine, we are not directly ob-

serving the state of the machine (i.e. the encoding of the value being represented): we are

only able to infer the intended value from the actions to which the value machine will re-

spond. For example, if the value machine shown in Figure 11 happens to be in state V1, then

it will interact via action o1 , indicating that the value 1 was being represented, but would

not interact via the action o2 or o3 which would indicate that some other value was being

represented.

What we learn from this is that the only thing that we can observe about a machine is its

behavior in terms of its interactions with other machines (its actions). Our first notion of

type has thus become a special case of the second notion, i.e. a behavioral specification. In

most cases, we shall see that the declaration of a type in a programming language is both

a behavioral specification and the specification of a machine that implements that be-

havior.

Page 96

Revised 1/28/99

5.2.1 Simple Data Types

The simplest notion of type that we find in programming languages is that of a set of values,

and these values are distinct from the values of every other type. For each set of values that

we wish to represent, we define a state type of value machines capable of representing that

set of values. The pre-defined or built-in types of a language are readily modeled as pre-

declarations of a number of state types.

5.2.2 Types with Structure

In modern programming languages, we have begun to see more complex data types arise:

the C union, the Ada variant record, and the subclass in C++ to name just a few. While we

will not give semantics for these types in this work, it is worth outlining the general ap-

proach to modeling these types in constructive semantics.

The C union is a data structure that may take more than one form. If M1,M2,...,Mn are the

state types for the various alternatives, then a first attempt at a model might take the form:

M1 ⊕ M2 ⊕... ⊕ Mn

This would partially capture the desired semantic. Unfortunately, if this were to be used as

the model for a variable, once an action belonging to one of the machines has occurred, then

the machine could never take on values belonging to the other types. To model this situa-

tion, we need to add an additional machine, similar in structure to the pointer machine that

we will describe later, that will keep track of which machine holds the “current” value, only

allowing read operations on that machine but allowing write operations on all of the ma-

chines. Such a composition might take the general form:

C | M1 | M2 |... | Mn

Page 97

Revised 1/28/99

where C is now the controlling machine, and the actions of M1 | M2 |... | Mn would be hidden

(C acting as an intermediary for all operations).

In variant records, the machine C becomes explicit - it is the variant part of the record. From

an external point of view, all variants of the record share the behavior of C, and depending

upon the value that C currently holds, the machine may behave like C | M1 or C | M2 or any

of the possible variants of the record. Stated another way, C defines an abstract type (recall

that using an abstract type says that the actions are restricted to those of C for the purposes

of determining behavioral equivalence) that is common to all of these machines. Thus the

state types defined by C | M1 and C | M2 and the rest of the possibilities are all of the same

abstract type C. This readily generalizes into a model for object oriented languages, in

which C is the parent class, and C | M1, C | M2 etc. would be its children. We also note that,

since a state type can be of more than one abstract type, the model covers multiple inherit-

ance as well.

5.3 Supporting Data Structures and Functions

We define some auxiliary data structures and operations for use in giving the actual seman-

tics of expressions.

5.3.1 Environments

An environment E:Ide×M is a relation between identifiers and machines.

Page 98

Revised 1/28/99

5.3.2 State Types

The approach that we shall take to defining state types is to give the specification of the

prototype machine and then keep track of the machines of that type as they are created. To

record these relationships, we define the relation StateType:

StateType:M×M

where the first machine is the machine whose type is being given, and the second machine

is the prototype machine of the state type. Note that the prototype machine is in the relation

mapped to itself.

5.3.3 Abstract Types

We keep track of the relationships between types by mapping the prototype machine of the

subclass to the prototype machine of its parent type in the AbstactType relation:

AbstractType:M×M

Where both machines are prototype machines, with the first type being a subclass of the

second.

5.3.4 Signatures of Subprograms

In order to do overload resolution, we must keep track of the parameter and result type pro-

file of subprograms. We define the Signature relation for this purpose, where:

Signature:M×M*

maps functions (the state type defining the function) onto an ordered list of the state types

associated with their arguments and return types. In this relation each entry is of the form

Page 99

Revised 1/28/99

(M,{M0,M1,M2,...,Mn}) and {M0,M1,M2,...,Mn} ∈M* is an ordered list of state types. We note

that if the state type on the left is not a subprogram, then Signature maps the state type to

itself. We further note that each state type only appears once on the left side of this relation.

We establish the convention that the first element of the signature is the return type, and we

shall use the idle machine 0 for this first element if the subprogram is a procedure.

5.3.5 Type Structure

We gather these three elements together into a data structure that we shall call a type struc-

ture. We define a type structure T to be a triple T=(StateType,AbstractType,Signature)

5.3.6 Finding the Type of a Machine

We define the semantic function Type:M→M that returns the type of a machine. Formal-

ly, this function is defined by:

Type(M) = MT iff (M, MT))∈StateType

5.3.7 Finding the Argument Signature of a Machine

We define the semantic function ArgSig:M→M* that returns the signature of the argu-

ments of a machine. Formally, this function is defined by:

ArgSig(M) = M1,M2,...,Mn iff ∃M0 s.t. (M, {M0,M1,M2,...,Mn}) ∈Signature

where {M0,M1,M2,...,Mn} is an ordered set of state types. A consequence of the way that Sig-

nature is defined is that if M is not a subprogram, then ArgSig(M) = {}.

Page 100

Revised 1/28/99

5.3.8 Finding the Return Signature of a Machine

We define the semantic function RetSig:M→M that yields the return type of a machine.

Formally, this function is defined by:

RetSig(M) = M0 iff ∃M1,M2,...,Mn s.t. (M, (M0,M1,M2,...,Mn))∈Signature

A consequence of the way that Signature is defined that if M is not a subprogram, then

RetSig(M) = M

5.3.9 Finding the Signature of a Machine

We define the semantic function Sig:M→M* that returns the signature of a machine type.

Formally, this function is defined by:

Sig(M) = M* iff (M,M*)∈Signature

We note that for all types except those representing functions,

5.3.10 References

We present a slightly simplified view of references and overload resolution here, postpon-

ing the formalization of more elaborate overload resolution schemes for later work. When

we seek to locate a machine by name in an environment, we will either not use any type

information, or we will specify explicitly the argument signature for the subprogram that

we are seeking.

We define the simple reference operation Ref:Ide×E→M to be a mapping from environ-

ments and identifiers to machines. Formally, this operation is characterized by:

Ref(ide ,ENV) = M iff (ide ,M)∈ENV and ∀M′≠M, (ide ,M′)∉ENV

Page 101

Revised 1/28/99

Note the requirement that the machine be uniquely identified. If no machine is uniquely

identified, we say that the reference is undefined, and we require that all of our semantic

functions be strict in the sense that any composition containing an undefined machine is,

itself, undefined.

We define the typed reference operation TypRef:Ide×E→M to be a mapping from envi-

ronments, signatures and identifiers to machines. Formally, this operation is characterized

by:

TypRef(ide ,ENV,sig) = M iff (ide ,M)∈ENV and ArgSig(M) = sig and

∀M′≠M,(ide ,M′)∈ENV⇒ArgSig(M′) ≠ sig

Note again the requirement that the machine be uniquely identified.

5.3.11 Getting New Machines of a Type

In our semantics we will frequently have a prototype machine (a state type) and wish to get

a new machine of that type. We define the semantic function New:M→M for this pur-

pose. What this function really does is to choose an index i into the machines of this type

that has not been used yet and relabel the prototype machine according to this index:

New(M) = M[φ0→i]

5.4 Elaboration: Formal Definition

Elaboration is a mapping from a language term, a local declaration set, a direct environment

and a type structure to a machine:

E:L×E×E×T→M

Page 102

Revised 1/28/99

The first term is the language expression whose meaning is being determined. The second

term is an environment that is to contain local declarations. Typically, this environment is

modified in the course of elaboration. The third term is an environment that contains ma-

chines that have been defined elsewhere that may be used in the course of performing the

elaboration.The fourth term is a type structure, which may contain some information ini-

tially and may also be added to during the course of elaboration.

5.5 Basic Data Types and Operations

The state types for primitive data types and their associated operations are taken as being

given as part of the language specification. In a formalization of the language, specifica-

tions of these machines in HCCS should be given so that there is no ambiguity about the

behavior of these machines. We have already given an example of a primitive data type (the

3-valued variable in section section 3.1.2 on page 50) and an associated operation (the as-

signment operator for 3-valued variables in section 3.2 on page 54).

5.6 Variables

A variable is a machine for holding values. The type of the machine is either partially or

entirely specified by the type of the variable, depending upon whether or not the abstract

type declared by the variable has other state types (subtypes) related to it that may appear

as actual values. For the purpose of discussion, we shall consider a state type that does not

have any subtypes to be a simple type, and a state type that does have subtypes to be a com-

plex type. We note that the subtype relation in the type structure contains the information

necessary to decide whether a type is simple or complex.

We will describe the semantics of a variable of a simple data type here, and leave the se-

mantics of complex types for a later work.

Page 103

Revised 1/28/99

5.6.1 Variables of a Simple Type

Variables of a simple data type are modeled as a value machine belonging to the indicated

state type. We locate the prototype machine of the state type and make a new copy:

E(variablename : typename ; , LD , DE, T)

= M ≡ New(MT)

where

MT = Ref(ide ,DE)

with side effects adding the new declaration to the set of local declarations and recording

the type relationship in the StateType relation:

LD = LD ∪ {(variablename , M)}

StateType = StateType ∪ (M,MT)

5.7 Pointers

Pointers are an indirect means of accessing a machine of a particular type. We give a se-

mantics here for a strongly typed pointer. The machine we will use to represent the pointer

will actually have two components, one being a variable that indicates which machine is

being pointed to, and the other being an interaction machine that re-directs actions to the

appropriate machine.

In order to define the variable, we must first define its state type. Let T be the abstract type

that we wish to have a pointer to, and let AbstractIndex(M,T) be a mapping from machine

M to its index in the set of machines belonging to the specified abstract type T. For every

[[]]

Page 104

Revised 1/28/99

abstract type T we assume that there is a corresponding state type TAbstractIndex

capable of representing the values of the indices. Then the variable part of the pointer is just

a variable of this type:

VP ≡ New(TAbstractIndex)

We let o1V be the action that the variable would take to indicate that the pointer is pointing

to the first machine belonging to abstract type T, o2V indicate that the second machine is

being pointed to, and so on.

Now we define the interaction machine. Our strategy is to use the actions belonging to one

member of the abstract type (we will use the actions belonging to the machine whose index

is 0) as the interface to the access type, and re-direct these actions to the machine designat-

ed by the variable. Let ai,j ∈Act ω be the jth action on the ith machine belonging to the

abstract type. Then we define a prototype interactor I P for all possible machines of abstract

type T with the following equations, letting I be the initial state:

I ≡ α.I 0

I 0 ≡ a0,0o1Va1,0.I 0 ⊕ a0,1o1Va1,1.I 0 ⊕... ⊕ a0,no1Va1,n.I 0 ⊕

 a0,0o2Va2,0.I 0 ⊕ a0,1o2Va2,1.I 0 ⊕... ⊕ a0,no2Va2,n.I 0 ⊕

...

 a0,0omVam,0.I 0 ⊕ a0,1omVam,1.I 0 ⊕... ⊕ a0,nomVam,n.I 0 ⊕

ι.I

where n is the number of actions on a machine of this abstract type, and m is the number of

machines. Each term corresponds to a single action on a single target machine. For exam-

Page 105

Revised 1/28/99

ple, the action a0,iomVam,i occurs if and only if another machine attempts to interface with

action a0,i, the pointer is currently pointing to machine m (indicated by the variable re-

sponding to omV) and the machine being pointed to responds to the action am,i.

Thus the semantics of the access type declaration in Ada would be:

E(type accessname is access typename ; , LD , DE, T)

 = M ≡ 〈VP | I P〉

where VP and I P are as defined above and the abstract type T = Ref(typename ,DE). We

also have the following side effects:

StateType = StateType ∪ (M,M)

AbtractType = AbtractType ∪ (M,T)

AbtractType = AbtractType ∪ (M,TAbstractIndex)

Note that we have a case here in which a single state type belongs to two abstract types.

When restricted to the actions of TAbstractIndex , it behaves like a variable of that

type (so that we can set the value of the pointer). When restricted to the actions of T it be-

haves like a machine of that type so that we can interact with machines of type T. We thus

have an instance of what is commonly referred to as multiple inheritance.

5.8 Statements

Statements are the basic unit of execution in a programming language. The most basic

statement is the direct invocation of an operation such as in an assignment statement or the

invocation of a subprogram. In covering the semantics of subprograms, we shall see that

[[]]

Page 106

Revised 1/28/99

the semantics of operators and subprograms is uniform both at the statement level and with-

in expressions.

Next, we shall proceed to give semantics for the infamous goto statement, followed by its

modern counterpart, raining an exception. Finally, we will conclude the discussion of state-

ments with the semantics of a loop.

5.8.1 Subprogram Calls and Expression Evaluation

The semantics that we give for subprogram calls encompasses the invocation for both op-

erators and subprograms. This treatment of operators as pre-defined subprograms allows

user-defined versions of these operators to be declared in a program and used consistently

throughout the program. The newly defined operator affects the visibility of the original op-

erator according to the visibility rules of the language

We will give several representative formulations for calling two argument subprograms

which can be readily generalized to an arbitrary number of arguments. In defining these ex-

pressions, we will frequently need to know the name of the operation at the root of an ex-

pression. We define the syntactic function Root(expression) that returns this identifier.

The simplest form of subprogram call assumes that the arguments are simply references to

existing machines (thus requiring no elaboration of the arguments) and further assumes that

the arguments are of the correct type. We arrive at a relatively simple semantic for our sub-

program call:

E(subprogramName (<argument 1>, <argument 2>); , LD , DE, T)

= New(Ref(subprogramName, DE))[M1/P1,M2/P2] 〉

[[]]

Page 107

Revised 1/28/99

where M1 = Ref(Root(<argument 1>)), M2 = Ref(Root(<argument 2>)), and [M1/P1,M2/P2]

is a minor abuse of our mapping notation indicating that the actions of the formal parameter

P1 are mapped to the actions of actual parameter M1, and similarly for P2 and M2. This as-

sumes, of course, that P1 and M1 are of the same type, and similarly P2 and M2 are of the

same type.

We now extend the semantics to include a modest amount of type checking. In this scheme,

type information propagates only in one direction: upwards from actual arguments to func-

tions.

E(subprogramName (<argument 1>, <argument 2>); , LD , DE, T)

= New(TypRef(subprogramName, DE,

{ RetSig(M1)×RetSig(M2)}))[M1/P1,M2/P2]

The semantics given for the previous two examples will work correctly if the argument is

an already instantiated machine instance as opposed to the prototype machine of a state

type. If the reference to the root of an argument turns up a prototype machine instead of an

instance, then we must create a new instance of that state type by elaborating the argument

as part of the elaboration of the subprogram call. We thus get (ignoring type checking

again):

E(subprogramName (<argument 1>, <argument 2>); , LD , DE, T)

= 〈 New(Ref(subprogramName, DE))[M1/P1,M2/P2] |

if Type(M1) = M1 then E(<argument 1> , LD , DE, T) else 0 |

if Type(M2) = M2 then E(<argument 2> , LD , DE, T) else 0 〉

[[]]

[[]]

[[]]

[[]]

Page 108

Revised 1/28/99

This almost gives us the semantics that we want, except for a possible problem in the order

of evaluation: we have not constrained the arguments to ensure that they are evaluated be-

fore the subprogram itself is evaluated. To accomplish this, for each argument that requires

elaboration, we introduce a new local variable to carry the result of the argument evaluation

forward to the subprogram itself. Ignoring type checking again, and leaving out the condi-

tionals (we assume that both arguments require elaboration) we now have:

E(subprogramName (<argument 1>, <argument 2>); , LD , DE, T)

= 〈 V1 | V2 | E(<argument 1> , LD , DE, T)[V1/out];

E(<argument 2> , LD , DE, T)[V2/out];

New(Ref(subprogramName , DE))[V1/P1,V2/P2] 〉\Sort(V1)∪Sort(V2)

where [V1/out] relabels the output formal parameter with the actions of V1. Note that we

have somewhat arbitrarily determined an order of evaluation for the actual parameter ex-

pressions.

In [Brow89] we have explored event more complex type checking and overload resolution

schemes. While these schemes add significantly to the type information that is passed

around between references (the reference functions themselves become very complicated),

the basic structure of the elaboration in terms of the structure of instantiated machines still

remains the same.

A final note on subprogram calls. We have made no distinction between functions and pro-

cedures in this semantics, nor have we made any distinction between calls that occur as an

actual statement and calls that occur as part of a subexpression. We note that if one of the

actual arguments to the subprogram was accidentally a procedure, then the typed reference

[[]]

[[]]

[[]]

Page 109

Revised 1/28/99

to the subprogram would fail to resolve to a machine. This illustrates the generality of this

approach to semantics.

5.8.2 Go-To

One of the oldest control constructs is the go-to statement. While a go-to appears to be a

simple jump to the start of a particular machine’s operation (its activation), we will almost

certainly be in the middle of executing another machine when we execute the go-to. If we

wish to exit this machine in such a way as to leave it ready to execute again, then we must

add an abort action ♦ to return the machine to its initial state without performing the idle

action. The following construct illustrates the use of the abort action in a trivial machine:

M0 ≡ α.M1 ⊕ ♦.M0

M1 ≡ a.M1 ⊕ ι.M0 ⊕ ♦.M0

Note that if the abort action occurs while the machine is in its initial state, the machine sim-

ply returns to its initial state. On the other hand, if the machine is in some other state, like

M1, the abort action returns the machine to its initial state without performing the idle action

ι, which would indicate that the machine had terminated in a normal manner, and could

well trigger other activity. This is the essence of the abort action: it returns the machine to

its initial state without indicating that the machine has terminated normally. We note that

the abort action, like the activate and idle action, would have to be unique to each machine.

We must also consider the problem of aborting a collections of machines in a parallel con-

struct. Consider the following:

〈M1 | M2 |...| Mn〉

Page 110

Revised 1/28/99

In giving the expansion of this term into HCCS (section 3.3 on page 57), we might now add

an additional term that ties the abortion of the overall construct to the abortion of the indi-

vidual machines in the construct:

(♦1♦2...♦n♦X.)*

where X designates the actions unique to the parallel construct itself. A machine can now

abort the entire parallel construct by interacting with the ♦X action.

We note that the ability to abort the construct depends upon the willingness of each ma-

chine in the construct to perform an abort. This behavior must be designed into the ma-

chines involved, and is a significant issue in the specification of the semantics for a pro-

gramming language, particularly when parallel constructs such as Ada tasks are involved.

We shall also see shortly that in many cases we will not wish to abort all of the machines

in the construct, but selectively abort some of them.

We now return to a discussion of the go-to statement. The destination statement of a go-to

might be of the syntactic form:

label : <statement>

We will elaborate this construct into two machines, one being the normal statement elabo-

ration, and the other providing an alternate means of activating this statement. The result of

elaborating this construct is as follows:

L ; S

where S is the machine resulting from the elaboration of the statement itself, and L is a la-

bel machine (giving us the alternate means of activating S) of the form:

Page 111

Revised 1/28/99

L0 ≡ αι.L0 ⊕ gι.L0

Here g is a new symbol that implements the actual goto action by forcing the ι action of

the label machine, which is, in turn, tied to the activate action of S via the “;” interactor.

Thus any time that the g action occurs, the idle action for the label machine occurs, this

triggering (through the “;” operator) the activation of the following statement.

The semantics for the labeled statement is thus:

E(label : <statement> , LD , DE, T)

= L′ ; E(<statement> , LD , DE, T)

where

L′≡ New(L)

where New(L) gives us a fresh copy of L with new actions (in particular, a new g action

unique to this label).

Now in order to effect the go-to, we of course require another machine to interact with this

label machine in order to start the statement again. Accordingly, we define such a machine

and associate this machine with the label name in the environment as part of the elaboration

of the label itself, thus giving us the side effect:

LD = LD ∪ (label ,New(GoTo)[g′/jump ,♦SOS/♦S])

where we again abuse the relabeling notation to indicate that the action jump in the GoTo

machine is mapped to the g action in the newly created L′. Also, the action ♦S of the

GoTo machine is mapped to the abort action of the enclosing sequence of statements.

[[]]

[[]]

Page 112

Revised 1/28/99

The GoTo machine itself is simply:

G0 ≡ α.♦G♦S.jump .G0 ⊕ ♦G.G0

where ♦S aborts just the machines in the enclosing sequence of statements, and ♦G is a

dummy action provided on this statement so that the ♦S action will succeed in aborting all

of the statements in the sequence, including this one. Note that this machine does not, in

fact, abort: it will perform the jump action before returning to its initial state. Note that this

machine never executes an idle action.

Finally, the goto statement itself has the semantics:

E(goto label ; , LD, DE, T)

= New(Ref(label , DE))

To illustrate the behavior of the following program fragment:

T: b := 2*a;

goto b;

Letting LT be the label machine associated with T, MA be the machine resulting from the

elaboration of the assignment statement, and MG be the goto machine, the elaboration of this

fragment would result in the following machine composition:

LT ; MA ; MG | (♦S♦A♦G.)*

where (♦S♦A♦G.)* is the term added by a sequence of statements elaboration that aborts

each of the statements in the sequence. Expanding into HCCS, we have:

[[]]

Page 113

Revised 1/28/99

L0 ≡ (αLιL.L0 ⊕ gTιL.L0) | (ιLαA.)* | MA | (ιAαG.)* | G0 ≡ (α.♦G♦S.gT.G0 ⊕ ♦G.G0)

Let us follow the behavior through one cycle. When L0 is first activated, it will perform the

action αLιL, which will interact through ιLαA to activate machine MA (the assignment state-

ment). When the assignment statement is through, it will execute its idle action, which,

through ιAαG, will activate the goto machine. The goto machine will perform the action

♦G♦S, which interacts with the parallel (♦S♦A♦G.)* term to idle MA (note the use of

“dummy” ♦G). This gets all of the machines in the sequence of statements back to their ini-

tial state except for the goto statement itself. The goto now performs the gT action, which

interacts with gTιL on the label machine, which in turn via ιLαA activates the assignment

machine again, thus implementing the goto. Note that the aborting of the sequence of state-

ments implies that machines that have not been activated yet (are still in their initial state)

must be willing to perform an abort action, returning to their initial states.

We have not, as yet, explored all of the implications of the abort action, and in particular

we have not explored the implications of abort actions with respect to the parallelization,

change of scope and removal of brackets theorems. We leave this as a topic for future work.

5.8.3 Raising an Exception

An exception in Ada is the very similar to a go-to statement, except that the machine to be

activated is not in the normal sequence of statements, but is itself a separate machine. When

an exception is raised, the sequence of statements in the declarative block where the excep-

tion handler is found is aborted (thus aborting all subordinate constructs), and the machine

corresponding to the exception handler is activated. This would give the following seman-

tics for a raise statement:

Page 114

Revised 1/28/99

E(raise exceptionName ; , LD , DE, T)

 = New(Ref(exceptionName , DE))

The exception handler itself is defined by:

E(when exceptionName => <sequence of statements> , LD , DE, T)

 = L′ ; E(<sequence of statement> , LD , DE, T)

where L′ is defined as in the go-to statement, and the appropriate goto machine is inserted

in the local declaration set:

LD = LD ∪ (exceptionName ,New(GoTo)[g′/j ,♦SOS/♦S])

where ♦SOS is the abort action associated with the normal sequence of statements in the de-

clarative block, and not the sequence of statements provided here as part of the exception

handler.

5.8.4 Loop

We give two alternative semantics for loops. The first semantic involves the instantiation

of a generic loop machine with the conditional expression and sequence of statements as

parameters. This will result in a construct in which each machine is activated and idled only

once (if at all), but has the disadvantage that it is a recursive construct in which copies of

the condition machine and the sequence of statements appear an infinite number of times.

The generic loop machine LOOP(C,S) is given by:

LOOP ≡ α.(V | LC)\Sort(V)

[[]]

[[]]

[[]]

Page 115

Revised 1/28/99

LC ≡ (S | C | =C→V | αC.ιC.(true VαS. ιS.LC ⊕

false Vι.LOOP))\{ αS,ιS,αC,ιC}

where S and C are variables that are assumed to be well-behaved machines. The generic

creates a local variable to hold the result of the evaluation of the conditional expression,

and then recursively executes the conditional expression and sequence of statements until

the conditional tests false.

For the actual loop,The recursive semantics for the loop is then given by:

E(while <condition>

loop

<sequence of statements>

end loop; , LD , DE, T)

 = New(LOOP(E(<condition> , LD, DE, T),

E(<sequence of statements> , LD , DE, T)))

If we take advantage of the ability of machines to be repeatedly activated, we can use the

following non-recursive (for the conditional and statement machines) formulation.

E(while <condition>

loop

<sequence of statements>

end loop; , LD , DE, T)

= (LOOP | V | MCOND | M SOS) \{αSOS,ιSOS,αCOND,ιCOND} ∪ Sort(V)

where

[[

]]

[[]]

[[]]

[[

]]

Page 116

Revised 1/28/99

 LOOP ≡ α.LC[αSOS/αS,ιSOS/ιS,αCOND/αC,ιCOND/ιC]

M COND ≡ 〈=COND→V | E(<condition> , LD , DE, T)〉

M SOS ≡ E(<sequence of statements> , LD, DE, T)

where SOS is the sequence of statements, COND is the machine that does the assignment

of the conditional value to the variable V, and

LC ≡ αC.ιC.(true VαS.ιS.LC ⊕ false Vι.LOOP)

5.9 Declarative Blocks

A declarative block is a collection of declarations followed by a sequence of statements and

possibly an exception handler. There are a number of possible semantics for declarative

blocks, each reflecting a different visibility semantics for the declarations that occur in the

block. We show two possibilities here.

For let or let* visibility semantics, we have:

E(blockname :

declare

<declarative part>

begin

<sequence of statements>

exception

<exception handler list>

end , LD , DE, T)

[[]]

[[]]

[[

]]

Page 117

Revised 1/28/99

= M ≡ 〈 E(<declarative part> , M:LD , DE, T) |

E(<sequence of statements> , M:LD , M:DE, T) |

E(<exception handler list> , M:LD , M:DE, T) 〉

Side effects:

LD = LD ∪ {(blockname , M)}

M:DE = M:LD ∪m DE

For letrec visibility semantics the direct environment passed to the declarative part would

be different, giving:

M ≡ 〈 E(<declarative part> , M:LD , M:DE, T) |

E(<sequence of statements> , M:LD , M:DE, T) |

E(<exception handler list> , M:LD , M:DE, T) 〉

5.9.1 Declarative Part

The elaboration of the declarative part simply elaborates each of the declarations, compos-

ing any machines that result in parallel. It is important to note that the elaboration of a vari-

able will return a machine. The elaboration of a function declaration or type declaration will

not return a machine - the created machine will be associated with the declared name in the

local declaration set LD , but no machine is actually instantiated as part of the elaboration.

For let or letrec visibility semantics, we would have

E(<declarative part> , LD , DE, T)

[[]]

[[]]

[[]]

[[]]

[[]]

[[]]

[[]]

Page 118

Revised 1/28/99

= 〈 E(<declaration 1> , LD, DE, T) |

E(<declaration 2> , LD , DE, T) | ...|

E(<declaration n> , LD, DE, T) 〉

It is important to note that for letrec visibility semantics, the enclosing declarative block has

included LD in the computation of DE. Thus the elaboration of one declaration could well

affect the meaning of a reference in another. This points out the importance of the order of

elaboration in determining the meaning of a program. Some languages put such severe con-

straints upon the relative positions of declarations with respect to references that the order

of elaboration is not an issue. Other languages, like Ada, provide mechanisms to specify

the order of elaboration in cases where the order may not be sufficiently constrained1. In

[Brow90] we show that an appropriate ordering, if one exists, may be determined through

the construction of a dependency graph relating declarations and references. Cycles in this

graph indicate that no proper elaboration ordering exists.

For let* visibility semantics, we would have

E(<declarative part> , LD , DE0, T)

= 〈 E(<declaration 1> , LD1, DE0, T) |

E(<declaration 2> , LD2, DE1, T) | ...|

E(<declaration n> , LDn, DEn-1, T) 〉

Here the order of elaboration is defined to be the order of declaration. For these elabora-

tions, we have:

LD0 = ∅

1. [LRM] p. 10-11

[[]]

[[]]

[[]]

[[]]

[[]]

[[]]

[[]]

Page 119

Revised 1/28/99

Prior to the ith elaboration, we have:

LD i = LD i-1

DEi = LD i-1 ∪ DE0

After the ith elaboration, LD i also contains the declaration resulting from the elaboration.

After the last elaboration, we compute the returned set of local declarations:

LD = LDn

5.9.2 Sequence of Statements

Because statements may have labels on them and references to them, elaboration order is

important here as well. We show the semantics for letrec style visibility1 (for sequential or

let* visibility, the local and direct environments are computed exactly as for the let* declar-

ative items).

E(<sequence of statements> , LD , DE, T)

= 〈 E(<statement 1> , LD, DE, T) |

E(<statement 2> , LD , DE, T) | ...|

E(<statement n> , LD, DE, T) 〉

5.9.3 Mixing Declarations and Statements

It should be apparent from the semantics given in the previous sections for declarations and

statements that there is no difference at all in their handling at this level of the semantics!

1. For sequential elaboration order and let* visibility, the computation of the local and direct envi-
ronments is exactly the same as for the let* visibility of declarations.

[[]]

[[]]

[[]]

[[]]

Page 120

Revised 1/28/99

Consequently, a semantics could easily be given for languages (like C and C++) that allow

declarations and statements to be mixed.

5.10 Complex Data Types

5.10.1 Simple Record

The semantics of a simple record is nearly identical to the treatment of the declarative part

of a declarative block. The major difference is that machines resulting from the elaboration

of the declarative part here will not be returned as the result of the elaboration. Instead,

they become the prototype machine for the new state type. An entry is made in the State-

Type relation mapping the new machine to itself (this identifying this machine as the pro-

totype machine for the state type).

E(type recordname is record

 <declarative part>

end record; ,T)

 = 0

Side effects:

M ≡ E(<declarative part> , M:LD, DE, T)

LD = LD ∪ {(recordname , M)}

StateType = StateType ∪ (M,M)

We note that the components of the record can be referenced with the selected component

notation described in section 4.8 on page 87.

[[

]]

[[]]

Page 121

Revised 1/28/99

5.10.2 Arrays

An array is a composition of machines (the elements of the array) and an index operation

that returns a pointer to the indicated element of the array. We concentrate first on the index

machine. Let T be the abstract type of the elements of the array, TIndexType be the

state type of the index of machines of type T, and ArrayIndexType be the state type

of the index into the array.

We let o1I be the action that the index would take to indicate that it is pointing to the first

machine in the array, o2I indicate that the second machine is being pointed to, and so on.

We note that AbstractIndex(M) maps machine M into the action of TIndexType that

indicates that the TIndexType machine is pointing to machine M. We let M1, M2, M3...

be the elements of the array. We then define the interaction machine prototype I A for an

array with the following equations, letting I be the initial state:

I ≡ α.I 0

I 0 ≡ o1IAbstractIndex(M1).I 0 ⊕

 o2IAbstractIndex(M2).I 0 ⊕1

...

 onIAbstractIndex(Mn).I 0 ⊕1

ι.I

where n is the number of elements in the array. Thus the semantics of a simplified array

declaration of fixed size would be:

E(type arrayname is array <indexExpression> of typename ; ,

LD , DE, T)

[[]]

Page 122

Revised 1/28/99

= 0

with the side effects doing all the work. We compute the size of the array, elaborating the

index expression and allowing it to execute, placing the result in Vtemp:

Vtemp ≡ E(Vtemp : integer; , LD , DE, T) |

〈E(Vtemp := <indexExpression>; , LD, DE, T) | αV.ιV.0 〉

We next create the prototype machine for the actual array:

M ≡ 〈 M1 ≡ New(T) |

M2 ≡ New(T) |

|...

|Mn ≡ New(T) |

I A〉 〉\Sort(Vtemp)

where I A is as defined above, T = Ref(typename ,DE), and n is the value encoded in Vtemp

after the index expression is evaluated. We also have the following side effects:

LD = LD ∪ {(arrayname , M)}

StateType = StateType ∪ (M,M)

AbtractType = AbtractType ∪ (M,TAbstractIndex)

AbtractType = AbtractType ∪ (M,ArrayIndexType)

5.10.3 Accessing Arrays

To access an array, we simply create a modified pointer machine of type TAbstract-

Index . This modified pointer initializes the variable VP before activating the interaction

[[]]

[[]]

Page 123

Revised 1/28/99

machine, and hides the variable VP so that the resulting pointer acts like a constant pointer.

The variable VP is initialized by evaluating the index expression and then using the I A part

of the array to map the index expression result into the initial value for VP. The formal se-

mantics is given by1:

E(arrayname [<indexExpression>] , LD , DE, T)

= 〈 〈 VP | =I→V; I P 〉 \Sort(VP) |

E(<indexExpression> , LD , DE, T) 〉

where VP and I P are defined as they were for pointers, V in the expression =I→V stands for

VP, and I = Ref(arrayname ,DE)

5.11 Programs and Subprograms

In this section, we shall describe a model of a subprogram as a state machine. We shall ini-

tially develop a call by value and return semantics for a machine that is as independent as

possible from the caller of the subprogram. We shall see that the executable body of this

machine is strictly orthogonal to the calling program. Later, we shall see that the introduc-

tion of nested scopes and/or the introduction of other parameter passing semantics essen-

tially relax the orthogonality between the executable body of the subprogram and the caller,

and we shall explore the implications of this loss of orthogonality.

We model our subprogram as a machine that can be conceptually divided into four parts: a

part that provides local state storage, a part that copies the initial values into the local stor-

age, a part that performs the actual computation associated with the subprogram, and a part

1. As with the first subprogram semantics given, this semantic assumes that if <indexExpres-
sion> is a function, then it is a call by value and result function. Alternate semantics, similar to
those shown for subprograms, may be used to generalize to any type of subprogram call semantics.

[[]]

[[]]

Page 124

Revised 1/28/99

that copies result values back to the caller. We can thus view the subprogram as a compo-

sition of machines:

〈M S|M I|M E|MO〉 Eq. 23

where MS is the local state, M I is the machine that provides initialization of the local state,

ME is the machine that actually implements the computation, and MO is the machine that

copies the values back out. We note that M I and M O are usually pure interaction machines.

5.11.1 Call By Value and Result

In call by value and result, values of input parameters are copied from the calling program’s

actual parameters to the subprogram’s formal parameters prior to executing the body of the

subprogram. Upon completion of the execution, values are copied from the formal param-

eters back to the actual parameters. Furthermore, the internal actions of the machine are

hidden, giving an overall composition that has the structure:

〈MS|M I;ME;MO〉Sort(MS)∪Sort(ME) Eq. 24

In ore detail, we include a storage state machine for each formal parameter (including the

implicit return formal parameter in a function) in the state machine for the subprogram. For

each parameter of mode in, we add an assignment machine to copy the initial value into the

formal parameter, and for each parameter of mode out, we add an assignment machine to

copy the values back.

Consider the following Ada subprogram:

function F1 (a:integer) return integer is

b: integer;

begin

Page 125

Revised 1/28/99

b := 2*a;

return b;

end F1;

This subprogram has three local declarations: the formal parameter a, the internal declara-

tion b, and the unnamed return value that we shall call r . If we let S1 be the elaboration of

the first statement, and S2 be the elaboration of the second, this subprogram would result

in the following machine after elaboration:

F1 ≡ 〈MS|M I;ME;M O〉 Sort(M I)∪Sort(M O) Eq. 25

where

MS ≡ 〈Va | Vb |Vr〉

M I ≡ =in→Va

ME ≡ 〈 C2 |✱C2,ςα→Vb〉;=Vb→Vr〉

MO ≡ =Vr→out

Expanding, we end up with:

F1 ≡ 〈Va | Vb |Vr | =in→Va; 〈 C2 |✱C2,ςα→Vb〉;=Vb→Vr;=Vr→out〉 Sort(in)∪Sort(out) Eq. 26

where in and out are action sets associated with the input and output formal parameters.

A more traditional interpretation of the subprogram would be to not have local storage for

the return value, but rather to interpret the return statement as a direct value copy to the tar-

get machine (with appropriate rearrangement of the synchronization constructs).

Page 126

Revised 1/28/99

F2 ≡ 〈Va | Vb | =in→Va; 〈 C2 |✱
C2,ςα→Vb〉;=Vb→out〉 Sort(in)∪Sort(out) Eq. 27

As one might expect, this interpretation of the subprogram is behaviorally equivalent to the

first.

5.11.2 Call by Reference

In call by reference, we dispense with the local storage for the formal parameters, and any

assignment machines that were used to copy values in or out. In place of these mechanisms,

we map the actions associated with the formal parameters to the actions associated with the

actual parameters. Re-casting our earlier example in the call-by-reference form, we get:

F3 ≡ 〈Vb | 〈 C2 |✱C2,ιν→Vb〉;=Vb→out〉 Sort(in)∪Sort(out) Eq. 28

It should be noted that while this particular example is behaviorally equivalent to the call

by value and return example, call by reference is not, in general, equivalent. Consider the

following slightly altered program:

function G (a:integer) return integer is

b: integer;

begin

b := a*a;

return b;

end F1;

G1 ≡ 〈Vb | ✱in,ιν→Vb〉;=Vb→out〉 Sort(in)∪Sort(out) Eq. 29

This machine will generate two in i actions instead of the on that would occur with call by

value and result and is, therefore, not observably equivalent to a call by value and result

version of the same program.

Page 127 Revised 1/28/99

6.0 Discussion and Conclusions

We have shown how the semantics of a programming language can be constructively given

in terms of primitive state machines and compositions of state machines. Thus the seman-

tics of a program is given as an abstract state machine whose structure is constructively

specified by the program itself. We have shown that the dominant concepts of a program-

ming language are readily understood in terms of three basic semantic concepts: state ma-

chines, state types (sets of isomorphic state machines), and generic machines (parameter-

ized specifications of state types.) We have shown that programs, subprograms and data

types all have a uniform interpretation as state types. We have described the relationship

between the identifiers in the language and the semantic model elements that they corre-

spond to, and we have provided a set-theoretic description of the computation of visibility

in programming languages.

Constructive semantics is fully abstract in the sense that behavioral equivalence defines

equivalence classes of semantic expressions, and these equivalence classes can be taken to

be the fully abstract semantics of the expression. We have left two interesting questions

open in this area. Is there a normal form for machine algebra expressions that would ease

their syntactic comparison? Is behavioral equivalence decidable in the restricted classes of

machines used in our semantics? Brookes’ work on normal forms of synchronization trees1

(which underlie HCCS) leads us to believe that for finite machines a unique (up to the or-

dering of terms) normal form exists in HCCS for each equivalence class, but we suspect

that the existence of a normal form of machine algebra expressions is precluded by the con-

straints that our machine algebra places on the form of HCCS expressions.

1. [Broo83] pp. 99-100.

Page 128

Revised 1/28/99

6.1 Topics for Future Work

There are a number of areas of the semantic modeling process that we have made a start in,

but which would benefit from additional work. These areas include: a more complete ex-

ploration of the notion of aborting the execution of a machine; a fuller exploration of the

type system’s capability of modeling concepts of type, including variant record structures

and type hierarchies arising in object oriented programming languages; an exploration of

the use of generic state machines to model Ada packages, tasks and generics; a detailed ex-

ploration of the interplay between structured types and overload resolution; and consider-

ation of extending our notion of behavioral equivalence to include Hoare’s divergences

equivalence. In the following we briefly discuss each of these areas.

6.1.1 Abort Actions

In our exploration of goto and exception semantics, we found a need for an abort action that

would return a machine to its initial state without executing its idle action. We did not, how-

ever, explore the behavior of sequential and parallel compositions of machines when one

of those machines aborts. In particular, we have left for future work a re-definition of a

well-behaved machine to include the notion of abortion, a corresponding re-definition of

our composition operators and the proof that the revised composition operators preserve the

well-behaved property.

6.1.2 Modeling More Complex Type Structures

We have left for later work a description of the semantics of variant record types and the

closely related description of class hierarchies in object oriented languages. It is our con-

jecture that a complete semantics for both can be given with the mechanisms described in

this thesis. In particular, it is our belief that our definition of abstract types provide a suffi-

Page 129

Revised 1/28/99

cient model for the “common” behavior of a parent class that is shared between its subclass-

es. Variant records are similar, with the shared portion being the discriminant (the portion

of the record indicating which variant - subclass- is actually present in the current record.

6.1.3 Ada Packages, Tasks and Generics

We have left the semantics of Ada packages, tasks and generics for future work. As with

more complex type structures, it is our conjecture that these three language constructs can

be modeled with the mechanisms described in this thesis. In [Brow90] we have already ex-

plored the visibility computations in these language constructs. For Ada packages, it is the

specification/body visibility rules alone that distinguish packages from the declarative

blocks described in this thesis. For tasks, the notions of concurrency and synchronous ren-

dezvous have been added, but we note that both of these concepts are already fundamental

parts of our model. Consequently, we do not anticipate any problems in modeling tasks. Fi-

nally, we believe that generic types, as defined here, will provide an adequate model of Ada

generics. Generics in Ada are parameterized packages, types and subprograms whose pa-

rameters are themselves types, subprograms or objects (variables). All of these parameter

constructs are modeled in our semantics by machines, and our generic types have in them

variables whose values are machines. Thus we anticipate that Ada generics will be modeled

in a very straightforward manner with our generic types.

6.1.4 Overload Resolution

The overload resolution model presented in this thesis shares type information between ref-

erences in a very limited manner. In [Brow89] we have explored more complicated over-

load resolution schemes sufficient to describe overload resolution as used in Ada, including

the resolution of generic parameters. This work needs to be merged with the current model

to provide a complete semantics for Ada overload resolution. Additional work of more fun-

Page 130

Revised 1/28/99

damental interest is an extension of this work to consider the interplay between type net-

works (multiple inheritance in object oriented languages) and overload resolution. We have

already demonstrated (in the pointer semantics) that multiple inheritance can be modeled

in our type system.

6.1.5 Divergence

Hoare’s failures equivalence, which we have used as our notion of behavioral equivalence,

encompasses two concepts about the observable behavior of machines: the sequences of ac-

tions that it is capable of executing (its traces), and the actions that it will possibly refuse

to take after performing a sequence of actions (its failures). Hoare [Hoar85] and Brookes

[Broo83] observe that there is a third significant possibility, and that a machine may go into

an infinite computation after performing a sequence of actions (its divergences). This we

might construe as a situation in which the machine may refuse to take any observable ac-

tion, but Hoare1 has gives an interpretation in which such a machine is construed to be able

to also take any possible action once it has diverged. We have been unable, as of yet, to

arrive at a suitable interpretation of divergence in our model, and have left it out of our def-

inition of behavioral equivalence. At some point the issue of the proper interpretation of

divergence in constructive semantics should be resolved and incorporated into the notion

of behavioral equivalence.

6.2 Benefits of Constructive Semantics

We believe that constructive semantics can be used in a very practical way by both compil-

er writers and programmers. If a compiler writer uses constructive semantics to specify the

characteristics of the machines that the compiler generates (how it implements various lan-

1. [Hoar85] p. 130.

Page 131

Revised 1/28/99

guage constructs), behavioral equivalence can be used to establish whether or not those

generated machines are equivalent to the constructs given by the language specification (al-

so given with constructive semantics). Furthermore, since behavioral equivalence is a con-

gruence relation, this equivalence can be established by comparing the implementation and

the language specification on a construct-by-construct basis, thus simplifying the complex-

ity of the task.

From the programmer’s perspective, we hope that programmers will find constructive se-

mantic descriptions to be readily understandable. We believe that the abstraction mecha-

nisms used in constructive semantics are very similar to those that the programmer uses ev-

ery day in designing modules. This similarity should allow the programmer to reason about

the constructive semantics in a manner similar to the way that he or she reasons about pro-

grams, first understanding the behavior of a module, and then later using that module in

some other context. This, of course, remains to be demonstrated.

Page 132 Revised 1/28/99

A HCCS

HCCS is the semantic model used in this thesis, and is a hybrid of work done by Milner,

Hoare and Brookes. The formal basis for this model is the synchronization tree semantics

of Brookes [Brook83].

The starting point for the semantic model is Milner’s CCS, with the following modifica-

tions:

1 Instead of using CCS’s flat set of actions, we use the abelian group of actions as

used in Milner’s SCCS and ASCCS.

2 Milner’s + operator is replaced by the similar operation used by Hoare and de-

fined in terms of Milner’s synchronization trees by Brookes [Broo83]. We will

continue to use + to represent this operation. The use of the Hoare operator

makes failures equivalence a congruence relation.

3 We alter the definition of Milner’s | operation to allow n-way synchronization

between agents, where CCS only allows binary synchronization. We provide a

formal semantics for this new operation using Brookes’ synchronization tree se-

mantics.

4 We use Brookes’ failures equivalence rather than Milner’s observational equiv-

alence. Milner’s observational equivalence makes non-observable distinctions

between machines, while Brookes’ failures equivalence only distinguishes be-

tween machines if the machines differ in observable behavior. The use of fail-

ures equivalence allows the proof of our parallelization theorem, which is not

true using observational equivalence.

Page 133

Revised 1/28/99

A.1 Actions

We first define Act , the set of actions. Actions, as we shall see, can be thought of as the

labels on the arcs of state machines. Let A = {..., c ,b,a,1,a,b,c ,...} be a set of primitive ac-

tions, and let × be a binary operator and be a unary inverse operator. Then we define

Act , the set of actions, to be the set generated by the following rules:

A ⊂ Act

∀a, b ∈Act:

1) a × b ∈Act

2) a ∈Act

In writing actions, we shall frequently omit the parallel composition operator ×, writing st

to represent s × t .

We add the following action axioms:

a × b = b × a (30)

(a × b) × c = a × (b × c) (31)

a × 1 = a (32)

a × a = 1 (33)

From these axioms, it follows that:

1 = 1 (34)

Page 134

Revised 1/28/99

 a= = a (35)

Then we have:

(Act , ×, 1,) is an Abelian Group (36)

We define Atom(a) to be the set of primitive actions that a is comprised of. For example,

if a and b are primitive actions, then Atom(ab) = {a, b}. By extension, if A is a set of ac-

tions, we define Atom(A) = ∪a∈A Atom(a). For A⊆Act , we define A+ to be the sub-

monoid of Act freely generated by A.

A.2 Synchronization Tree Semantics

The semantics of our model is given in terms of synchronization trees in the manner of Mil-

ner. We will here borrow the definitions and notation of Brookes [Broo83], noting devia-

tions from Brookes as they occur.

We begin with a basic algebra over synchronization trees (ST’s)1 whose operations are

NIL, +, and a(), where NIL is the trivial tree:

+2 is a binary operation combining two trees:

1. [Broo83] pp. 91-92
2. This is Milner’s + operation.

•

S T

+ is the tree

S T

(identify roots)

Page 135

Revised 1/28/99

and a(S) is a unary operation for each a ∈Act :

Thus the general synchronization tree can be expressed in the form:

where ai ∈Act - {1}.

In the case where S=NIL , we have n=m=0.

If s is a sequence of observable actions, we say that a subtree S′ is an s-derivative of S if

there exists a path from the root of S to the root of S′ whose observable actions form the

sequence s. Following Milner, we define the relation S S′ between trees:

S S′ iff S′ is an s-derivative of S

We have the following laws for ST’s, letting S, T, U ∈ ST:

Axiom 6 Associativity of Synchronization Trees

S+(T+U) = (S+T)+U

Axiom 7 Commutativity of Synchronization Trees

a()S is the tree

S

a

S a iSi

i 1=

n

∑ 1Sj′

j 1=

m

∑+=

⇒s

⇒s

Page 136

Revised 1/28/99

S+T = T+S

Axiom 8 Nullity of Synchronization Trees

S+NIL = S

Axiom 9 Idempotence of Synchronization Trees

S+S = S

A.3 Agent Expressions and Agents

We now proceed to give a syntax for the specification of a state machine as a synchroniza-

tion tree. Subtrees in the synchronization trees will correspond to syntactic constructs that

we shall call agent expressions. We begin by defining E, the set of agent expressions. Each

of these expressions can be thought of as representing a state of the machine. Agent expres-

sions may contain variables, in which case the expression is a template for a state that will

be fully specified when the values of the variables are specified. An agent is an agent ex-

pression that contains no variables. Such an expression, in conjunction with the inference

rules that relate one agent expression (state) to the next, constitutes a fully specified state

machine.

Formally, let K = {0,1,A,B,C,...} be a set of agent constants1, and X = {X,Y,Z,...} be a set

of agent variables. Let × and + be binary composition operators. Let φ:Act →Act be a

mapping from Act to Act such that and φ(1) = 1. If A is a subgroup of

1. Constants are used to specify recursion. As we shall see shortly, constants are not strictly neces-

sary, since the fix construct with variables is quite capable of representing recursive definitions.
However, the use of constants to specify recursion makes the specifications somewhat easier to
read.

φ(a) = φ(a)

Page 137

Revised 1/28/99

Act , let E A be a unary operator that restricts the actions of E to the actions present in A.

Then we define E, the set of agent expressions, to be the set generated by the following

rules:

K ∪ X ⊂ E

∀ E,F ∈ E, a ∈Act :

Action:

1) a.E ∈ E

Informally (we will give the formal semantics later), a.E means that the agent expression

a.E performs the action a, and then performs the actions specified by E.

Product:

2) E | F ∈ E

E | F means that the agent expression is a composition of the agent expressions represented

by E and F. Actions performed by the composition consist of either just one of the compo-

nent elements (E or F) performing an action (asynchronous action) or both component el-

ements (E and F) performing actions simultaneously (synchronous action).

Summation:

3) Ei ∈ E∑
i∈I

Page 138

Revised 1/28/99

where Ei is an independent set of agent expressions from E, and I is an index set. Ei

means that the agent expression represented by the summation is a composition of alterna-

tive agent expressions, and will ultimately perform the observable actions specified by ex-

actly one of the expressions in the set of Ei. There is one summation that we shall have oc-

casion to use frequently, and this is the inaction machine 0:

0 ≡ Ei (37)

Because the set of expressions is empty, this machine never performs any actions.

In the special case of a summation involving two machines, we shall write the summation

as E⊕F.

It is important to note that the operation being defined here is not Milner’s summation op-

erator, but a generalization to an arbitrary number of terms of Hoare’s operator. As we

shall see, the behavior of the Milner and Hoare operators is the same for observable actions,

but different for the non-observable action 1.

Restriction:

4) E A ∈ E

E A means that the agent expression is specified by E except that any actions not in At-

om(A)* are hidden. If an action is hidden, then no agent expression outside of E may trigger

that action. A related operation is to hide just the actions that are in Atom(A)*. We shall

designate this with the notation E\ A, and define this to be:

4a) E\ A ≡ E (Act - Atom(A)*)

∑
i∈I

∑
i∈∅

Page 139

Revised 1/28/99

Morphism :

5) E[φ] ∈ E

E[φ] means the agent expression specified by E after the actions have been mapped as

specified by φ.

Recursion:

6) fixj ∈ E

where = {Xi | i ∈ I} is an I-indexed set of distinct agent expression variables, =

{Ei | i ∈ I} is an I-indexed set of agent expressions in which the variables Xi may occur

free, and j ∈ I. The expression

fix j

represents the solution for the jth variable from the set of equations {Xi ~ Ei: i ∈ I}, where

the symbol ~ is a congruence relation called strong bisimulation that will be defined later.

The prefix fixj has the effect of binding all of the variables in .

The system of equations that appears in the recursion expressions is not unlike the produc-

tion rules of a BNF grammar, where the expression on the right may be substituted for the

variable that appears on the left wherever the variable appears. In the simplest case of only

one variable, we omit the subscripts, giving fixXE.

Constant Definitions:

X~ E~

X~ E~

X~ E~

X~ X~

Page 140

Revised 1/28/99

As an alternative to the use of the fix operation, we can use systems of equations involving

constants, where a constant is one of the variables in a recursive set of equations, and the

expression on the right hand side is one of the expressions on the right hand side in the re-

cursive set of equations. Each constant is defined to be an agent expression E:

A ≡ E

A.4 Semantics of Agent Expressions

We give the semantics for agent expressions using Brookes’ notation for synchronization

trees. Where indicated, the semantic definitions are taken from [Broo83]. The mapping

• :E→ST is given by:

a.E = a(E)

E | F = E | F

E⊕F = E F

E A = E A

E[φ] = φ(E)

A = E

where E, F∈E are agent expressions, A∈E is a constant, and the tree operations |, , and

φ are given by:

[[]]

[[]] [[]]

[[]] [[]] [[]]

[[]] [[]] [[]]

[[]] [[]]

[[]] [[]]

[[]] [[]]

Page 141

Revised 1/28/99

+ 1

It should be recalled here that in the fifth term above, when ai = bj, then aibj = 1, and the

resulting term becomes one of the silent transitions of the composition.

S A = 2

S A = (Si A) + (Si′ A)

φ(S) = (φ(Si)) + (φ(Si′))

1. This is slightly different than Brookes’ definition for Milner’s | operator, which only allows
simultaneous action when ai = bj

2. This is Brookes’ semantics for Hoare’s operator.

S a iSi

i 1=

n

∑ 1Sj′

i 1=

m

∑+=

T b jTj

j 1=

N

∑ 1Tj′

j 1=

M

∑+=

S T a i Si T()

i 1=

n

∑ b j S Tj() 1 Si′ T()

i 1=

m

∑ 1 S Tj′()

j 1=

M

∑++

j 1=

N

∑+=

a i

j 1=

N

∑ b j Si Tj() 1

j 1=

M

∑ Si′ Tj′()

i 1=

m

∑+

i 1=

n

∑

a iSi

i 1=

n

∑ b jTj 1 Si′ T()

i 1=

m

∑ 1 S Tj′()

j 1=

M

∑++

j 1=

N

∑+

a i

a i A∈

∑ 1

i 1=

m

∑

φ a i()

i 1=

n

∑ 1

1=

m

∑

Page 142

Revised 1/28/99

A.5 Labeled Transition Systems

We now proceed to define a labeled transition system, which can be thought of as the spec-

ification of a state machine whose number of states is not necessarily finite. Agent expres-

sions are the states of these machines, and actions label the transitions between agent ex-

pressions, hence the term labeled transition system. Formally, a labeled transition system

is a triple:

(E, Act , {→a : a ∈Act })

where E is a set of agent expressions, Act is a set of actions, and each →a is a relation

between agent expressions.

In this system, we have the following inference rules, derived from the synchronization tree

semantics

Action:

1 (38)

This rule says that the agent expression a.E may be converted into the agent expression E

when the action a occurs. (We note that the occurrence of an action means that some other

agent expression, with which this one has been composed in a product, has simultaneously

made a transition with the action a.)

Summation:

1. This is Brooke’s (PRE) axiom of [Broo83] p. 168

a.E →a E

Page 143

Revised 1/28/99

 1 (39)

This rule says that if an agent expression Ej can be converted into an agent expression E′j

when the observable action a occurs, then a summation Ei containing Ej can also be

converted into the agent expression E′j when the action a occurs.

2 (40)

This rule says that if an agent expression Ej can be converted into an agent expression E′j

when the unobservable action 1 occurs, then a summation Ei containing Ej can also be

converted into the summation Ei[E ′j /Ej] when the action 1 occurs.

This pair of rules has the effect of preventing a non-observable transition of one element of

a summation from eliminating the other possibilities in the summation. This is distinctly

different from Milner’s semantics3, which uses the first rule only and places no restriction

on the action. The use of Milner’s semantics prevents failures equivalence from being used

as a congruence relation, which is a requirement of our model4.

1. This is an obvious generalization of the (COND2) inference rule of [Broo83] p. 168

2. This inference rule is both less restrictive and more general than the (COND1) inference rule of
[Broo83] p. 168
3. [Miln83] p. 271
4. Milner’s observational equivalence is also not a congruence relation in CCS. It is conjectured

that the use of Hoare’s operator (which we are using here as our + operator) in lieu of Milner’s +
would make observational equivalence a congruence relation in the modified system.

Ej →a E′j
Ei →a E′j

(j∈Ι,a≠1)∑
i∈I

∑
i∈I

Ej →1 E′j
Ei →1

(j∈Ι)
Ei[E ′j /Ej]∑

i∈I
∑
i∈I

∑
i∈I

∑
i∈I

Page 144

Revised 1/28/99

Product:

(41)

(42)

These rules say that if either machine can make a transition, then that machine may make

the transition in the product.

(43)

This rule says that if the agent expression E can be converted into the agent expression E′

when the action a occurs, and the agent expression F can be converted into the agent ex-

pression F′ when the action b occurs, then the agent expression E | F that is the product of

these agent expressions can be converted into the agent expression E′ | F′ when the action

ab occurs (recall that ab is the product of the actions a and b).

Restriction:

(44)

E →a E′

E |F →a E′ | F

E |F →b E | F′

F →b F′

E →a E′

E |F →ab E′ | F′

F →b F′

E →a E′

E S →a E′ S
(a∈S)

Page 145

Revised 1/28/99

This rule says that if the agent expression E can be converted into the agent expression E′

when the action a occurs, then the agent expression E S (which is the agent expression E

with its actions restricted to the actions present in S) can be converted into the agent ex-

pression E′ S when the action a occurs provided that a is a member of S. The implication

is that if a is not a member of S then no transition is possible on a. Recall that the action 1

is always required to be a member of S.

Morphism :

(45)

This rule says that if the agent expression E can be converted into the agent expression E′

when the action a occurs, then the agent expression E[φ] (the agent expression E with all

of its actions mapped into new actions by the morphism φ) can be converted into the agent

expression E′[φ] by the action φ(a).

Recursion:

(46)

This rule says that if the agent expression Ei can be converted into the agent expression E′

when the action a occurs after all of the variables in have been bound to the agent ex-

pressions in and those bound values have been substituted for occurrences of the vari-

E →a E′

E[φ] →φ(a)
E′ [φ]

Ei[fixXE/ X] →a E′~~ ~

fix iXE →a E′~~

X~

E~

Page 146

Revised 1/28/99

ables in Ei, then fixi (which is the solution for the ith member of) can also be con-

verted into the agent expression E′ when the action a occurs.

The equivalent rule for constants is:

(47)

This rule says that if the constant C is defined to be the agent expression E, and E can make

a transition to E′ with the action a, then the constant C can also make a transition to E′ with

the action a.

A.6 Sorts of Agents

We now give some rules for determining the sort of an arbitrary agent.

We now define the Sort() operation, that takes as its argument an agent and returns the set

of primitive actions that appear in the agent. The Sort() operation is defined recursively:

Sort(a.P) = Atom(a) ∪ Sort(P) (48)

Sort(Pi) = ∪i∈I Sort(P) (49)

Sort(P | Q) = Sort(P) ∪ Sort(Q) (50)

Sort(P A) = Atom(A) (51)

Sort(P\ A) = Sort(P) - A (52)

X~ E~ X~

E →a E′

C →a E′
(C≡E)

∑
i∈I

Page 147

Revised 1/28/99

Sort(fix i) = Sort() (53)

Sort(P[φ]) = Atom(φ(Sort(P))) (54)

We also have the following theorems:

P::L and L⊆M implies P::M (55)

a ∈ L+ and P::L implies a:P ::L (56)

::L implies ∑ ::L (57)

P::L and Q::L implies P | Q::L (58)

P::L implies P\ A::(L - A) (59)

P::L implies P[φ]::Atom(φ(L)) (60)

A.7 Failures Equivalence

Hoare characterizes a machine in terms of its observable actions, its traces (observable se-

quences of actions) and its failures (the actions that may not be responded to after a given

sequence of observable actions).

The initials of a synchronization tree are the first observable actions of the tree. The traces

of the tree are the sequences of observable actions that occur on any path beginning at the

root of the tree. Equivalently, the traces of a tree S are the observable action sequences s

for which S has an s-derivative. A tree can refuse a set of events X if it can make a silent

transition to a subtree none of whose initials is a member of X1. The failures of a tree are

X~ E~ X~

X~ X~

Page 148

Revised 1/28/99

the pairs (s, X) such that the tree has an s-derivative that can refuse X. The following def-

initions1 make this precise

Initials(S) = {a:∈Act | ∃S′s.t. S S′}

Traces(S) = {s | ∃S′s.t. S S′}

Refusals(S) = {X | ∃S′s.t. S S ′ and X∩Initials(S′)=∅}

Failures(S) = {(s,X) | ∃S′s.t. S S′ and X∩Initials(S′)=∅}

Brookes formally defines failure equivalence in terms of synchronization trees, giving us

the following axioms and inference rule on synchronization trees, with S, T, U ∈ ST 2:

Axiom 10 Failure Equivalence of Synchronization Trees - B1

1S = S

Axiom 11 Failure Equivalence of Synchronization Trees - B2

S+1T+U = 1(S+T)+1T+U

Axiom 12 Failure Equivalence of Synchronization Trees - B3

aS+aT+U = a(1S+1T)+U

1. Note that every tree can make a silent transition to itself
1. [Broo83] p. 96
2. [Broo83] p. 98

⇒
〈a〉

⇒s

⇒〈〉

⇒s

Page 149

Revised 1/28/99

Axiom 13 Failure Equivalence of Synchronization Trees - B4

1(aS+T)+1(aS′+T′) = 1(aS+aS′+T)+1(aS+aS′+T′)

Inference Rule 14 Failure Equivalence of Synchronization Trees - R

Now we must show that the tree operations the tree operations a(), |, ⊕, and φ respect

failures equivalence. Brookes shows that a(), ⊕ and φ respect failures equivalence1, so it

remains to be shown that | and respect failures equivalence.

Theorem 15 Composition Respects Failures Equivalence

For all S, S′, T, T′ ∈ ST, S=S′ and T=T′ imply S|T=S′|T′

Before proceeding with the proof of this theorem2, we must establish some supporting re-

sult. The traces of S|T are obtained by composing the traces of S and T, in the following

sense:

We define the set of all compositions Comp(s,t) of two traces s and t by induction on the

length of the traces:

1 Comp(〈〉,t) = Comp(t ,〈〉) = {〈t 〉}

1. [Broo83] p106, theorem 4.3.4. Our ⊕ operation is Brookes’ operation on trees, and our φ is
Brookes’ f(S)
2. Our proof is patterned after Brookes’ proof for Milner’s original | operation from CCS as found
in [Broo83] p.106

S = S ′

aS + T = aS′ + T

Page 150

Revised 1/28/99

2 Comp(〈a〉s,〈b〉t) = {〈a〉u | u∈Comp(s,〈b〉t)} ∪ { 〈b〉u | u∈Comp(〈a〉s,t)}

∪ { 〈ab〉u | a≠b, u∈Comp(s,t)} ∪ { u | a=b, u∈Comp(s,t)}

Lemma 16 Traces of a Composition

The traces of a composition S|T are obtained by the compositions of their traces:

Traces(S|T) = where s∈Traces(S) and t∈Traces(T)

Proof: by inspection of the definition of the | operation on trees.

Lemma 17 Initials of a Composition

The initials of a composition S|T are obtained from the initials of S and T:

Initials(S|T) = Initials(S) ∪ Initials(T)

 ∪ {st | s∈Initials(S), t ∈Initials(T), s≠t }

where s,t ∈ {(s,t) | ∃S′s.t. S S′ and ∃T′s.t. T T′}

Proof: by inspection of the definition of the | operation on trees.

Lemma 18 Refusals of a Composition

The refusals of a composition S|T are obtained from the refusals of S and T:

Comp s t,()
s t
∪

Initials S′() Initials T′()∪
s t
∪

⇒s ⇒t

Page 151

Revised 1/28/99

Refusals(S|T) = {x | x∈Refusals(S) and x∈Refusals(T)}

∪ {st | s∈Refusals(S) and t ∈Refusals(T)}

∪ {x | ∃s s.t. S S′ and T T′ and x∈Refusals(S′) and

x∈Refusals(T′)}

Proof: by inspection of the definition of the | operation on trees.

Lemma 19 Failures of a Composition

Failures(S|T) = {(s,X) | s∈ where s∈Traces(S) and

t∈Traces(T), and

X = {x | x∈Refusals(S/s) and x∈Refusals(T/t)}

∪ {st | s∈Refusals(S/s) and t ∈Refusals(T/t)}

∪ {x | ∃u s.t. S/s S′ and T/t T′ and x∈Refus-

als(S′) and x∈Refusals(T′)}

Proof: by inspection of the definition of failures and Lemma 16, Lemma 17 and Lemma 18.

Proof of Theorem 15: By the previous three lemmas, the failures of the composition are

uniquely determined by the failures of the component trees. Since the theorem replaces

each of the subtrees with failure equivalent trees, their failures must be identical, and the

failures of the composition must be the same. Q.E.D.

Theorem 20 Restriction Respects Failures Equivalence

For all S, S′ ∈ ST, S=S′ implies S A=S′ A

⇒s ⇒s

Comp s t,()
s t
∪

⇒u ⇒u

Page 152

Revised 1/28/99

Proof: similar to Theorem 15

A.8 Equational Properties

Let P be the set of agents. Then for P,Q,R ∈ P, the following theorems are valid:

P | Q = Q | P (61)

(P | Q) | R = P | (Q | R) (62)

P Sort(P) = P (63)

Sort(P) ⊆ Atom(S) implies (P | Q) S =P | Q S (64)

S⊥Sort(P) implies (P | Q) \S = P | Q\S (65)

S⊥Sort(P) implies P \S = P (66)

(P S) T = P (S∩T) (67)

(P\S)\T = P\(S∪T) (68)

0 | 0 = 0 (69)

Page 153

Revised 1/28/99

B Machine Algebra

While our formal semantics (App. A) is based upon the concepts of states and transitions,

we would like instead to talk in terms of entire machines. To emphasize this distinction, we

use a bold symbol M to represent a machine. To transform a machine expression into a

CCS-like state expression, we simply replace each machine M with the first state M0 of the

defining expression for M or with the first state of any observationally equivalent machine.

This conveniently allows us to conduct proofs using the calculus developed in App. A, and

convert back to machine expressions at will.

Theorem 21 Commutivity

 ∀ M j, Mk

Mj | Mk = Mk | Mj

By App. A (61).

Theorem 22 Associativity:

∀ M j, Mk, Mm

(Mj | Mk) | Mm = Mk | (Mj | Mm)

By App. A (62)

Theorem 23 Orthogonality and Symbol Hiding

∀ M j, Mk

Mj ⊥ M k\Sort(Mk)

1: Sort(Mk\Sort(Mk)) = {1} definition of \

Page 154

Revised 1/28/99

2: Sort(Mj) ∩ {1} = {1} definition of ∩

3: Sort(Mj) ∩ Sort(Mk\Sort(Mk)) = {1} 1 & 2

4: Mj ⊥ M k\Sort(Mk) 3 & definition of ⊥

Q.E.D.

Theorem 24 Elimination of Actions

(b.Mj | b.Mk)\{ b} = (Mj | Mk)\{ b}

We show that the two sides have the same semantics

1: (b.Mj | b.Mk)\{ b} = (b.Mj | b.Mk)\{b} Semantics of \

2: b.Mj | b.Mk = b.Mj | b.Mk Semantics of |

3: b.Mj = b(Mj) Semantics of .

4: b.Mk = b(Mk) Semantics of .

5: b.Mj | b.Mk = b(Mj) | b(Mk) 2, 3 & 4

6: b.Mj | b.Mk = b(Mj) + b(Mk) + 1(Mj | Mk)

Definition of | for ST’s

7: (b.Mj | b.Mk)\{ b} = (b(Mj) + b(Mk) + 1(Mj | Mk))\{b}

1 & 6

8: (b.Mj | b.Mk)\{ b} = (1(Mj | Mk))\{b} Definition of \ for ST’s

[[]] [[]]

[[]] [[]] [[]]

[[]] [[]]

[[]] [[]]

[[]] [[]] [[]]

[[]] [[]] [[]] [[]] [[]]

[[]] [[]] [[]] [[]] [[]]

[[]] [[]] [[]]

Page 155

Revised 1/28/99

9: (b.Mj | b.Mk)\{ b} =(Mj | Mk)\{ b} 8 & App. A Axiom 10

10: Mj | Mk = Mj | Mk Semantics of |

11: (b.Mj | b.Mk)\{ b} = (Mj | Mk)\{ b} 9 & 10

12: (b.Mj | b.Mk)\{ b} = (Mj | Mk)\{ b} 11 & Semantics of \

Q.E.D.

Theorem 25 Elimination of Actions

(ab .Mj | bc .Mk)\{ b} = ac .(Mj | Mk)\{b}

We show that the two sides have the same semantics

1: (ab .Mj | bc .Mk)\{ b} = (ab .Mj | bc .Mk)\{b} Semantics of \

2: ab .Mj | bc .Mk = ab .Mj | bc .Mk Semantics of |

3: ab .Mj = ab(Mj) Semantics of .

4: bc .Mk = bc(Mk) Semantics of .

5: ab .Mj | bc .Mk = ab(Mj) | bc(Mk) 2, 3 & 4

6: ab .Mj | bc .Mk = ab(Mj) + bc(Mk) + ac (Mj | Mk)

Definition of | for ST’s

7: (ab .Mj | bc .Mk)\{ b} = (ab(Mj) + bc(Mk)

+ ac (Mj | Mk))\{ b} 1 & 6

[[]] [[]] [[]]

[[]] [[]] [[]]

[[]] [[]]

[[]] [[]]

[[]] [[]]

[[]] [[]] [[]]

[[]] [[]]

[[]] [[]]

[[]] [[]] [[]]

[[]] [[]] [[]] [[]] [[]]

[[]] [[]] [[]]

[[]] [[]]

Page 156

Revised 1/28/99

8: (ab .Mj | bc .Mk)\{ b} = (ac (Mj | Mk))\{b}

Definition of \ for ST’s

9: Mj | Mk = Mj | Mk Semantics of |

10: (b.Mj | b.Mk)\{ b} = (ac (Mj | Mk))\{ b} 8 & 9

11: (b.Mj | b.Mk)\{ b} =(ac. (Mj | Mk))\{ b}

10 & Semantics of .

12: (b.Mj | b.Mk)\{ b} = (ac. (Mj | Mk))\{ b} 11 & Semantics of \

Q.E.D.

Theorem 26 Associativity of ;

(Mi; Mj);Mk = Mi;(Mj;Mk)

1: (Mi; Mj);Mk = ((Mi | A
i→j | Mj)\{ ιi,αj} | A

j→k | Mk)\{ ιj,αk}

Definition of ;

2: Aj→k ⊥{ ιi,αj} Definition of Aj→k

3: Mk ⊥{ ιi,αj} Uniqueness of ι and α

4: (Mi; Mj);Mk = ((Mi | A
i→j | Mj | A

j→k | Mk)\{ ιi,αj})\{ ιj,αk}

1, 2, 3 & App. A (65)

5: (Mi; Mj);Mk = (Mi | A
i→j | Mj | A

j→k | Mk)\{ ιi,αj,ιj,αk} App. A (68)

6: Mi ⊥{ ιj,αk} Uniqueness of ι and α

[[]] [[]] [[]]

[[]] [[]] [[]]

[[]] [[]]

[[]] [[]]

[[]] [[]]

Page 157

Revised 1/28/99

7: Ai→j ⊥{ ιj,αk} Definition of Ai→j

8: (Mi; Mj);Mk = (Mi | A
i→j | (Mj | A

j→k | Mk)\{ ιj,αk})\{ ιi,αj}

5,6,7 & App. A (65) &

App. A (68)

9: (Mi; Mj);Mk = Mi;(Mj;Mk) Definition of ;

Q.E.D.

Theorem 27 Removal of brackets

〈Mj | 〈Mk〉〉 = 〈Mj | Mk〉

1: 〈Mj | 〈Mk〉〉 =

((αxαjαy.)* | Mj | ((αyαk.)* | Mk | (ιkιy.)*)\{ αk,ιk} | (ιjιyιx.)*)\{ αj,αy,ιj,ιy}

Definition of 〈〉

2: (αxαjαy.)*⊥{ αk,ιk}, Mj⊥{ αk,ιk}, (ιjιyιx.)*⊥{ αk,ιk} Uniqueness of ι and α

3: 〈Mj | 〈Mk〉〉 =

((αxαjαy.)* | M j | (αyαk.)* | Mk | (ιkιy.)* | (ιjιyιx.)*)\{ αk,ιk,αj,αy,ιj,ιy}

1,2 & App. A (65) &

App. A (68)

4: (Mk | (ιkιy.)* | (ιjιyιx.)*) ⊥ {αy}, ((αxαjαy.)* | (αyαk.)* | Mk) ⊥ { ιy}

Uniqueness of ι and α

Page 158

Revised 1/28/99

5: 〈Mj | 〈Mk〉〉 =

(((αxαjαy.)* | (αyαk.)*) \{ αy} | Mj | Mk | ((ιkιy.)* | (ιjιyιx.)*) \{ ιy})\{ αk,ιk,αj,ιj}

3,4 & App. A (65) &

 App. A (68)

6: ((αxαjαy.)* | (αyαk.)*) \{ αy} = ((αxαjαk.((αxαjαy.)* | (αyαk.)*)) \{ αy}

Theorem 25, with a = αk,

b = αy, c = αxαj

7: ((αxαjαy.)* | αyαk.)*) \{ αy} = ((αxαjαk.)*)\{ αy} 6 & recursive application

of Theorem 25

8: (αxαjαk.)* ⊥{ αy} Uniqueness of α

9: ((αxαjαy.)* | (αyαk.)*) \{ αy} = (αxαjαk.)*

10: 〈Mj | 〈Mk〉〉 = ((αxαjαk.)* | M j | Mk | ((ιkιy.)* | (ιjιyιx.)*) \{ ιy})\{ αk,ιk,αj,ιj}

5 & 9

11: ((ιkιy.)* | (ιjιyιx.)*) \{ ιy} = (ιkιjιx.)* Similar to step 6-9

12: 〈Mj | 〈Mk〉〉 = ((αxαjαk.)* | Mj | Mk | (ιkιjιx.)*)\{ αk,ιk,αj,ιj}10 & 11

13: 〈Mj | 〈Mk〉〉 = 〈Mj | Mk〉 12 & Definition of 〈〉

Q.E.D.

Page 159

Revised 1/28/99

B.1 Parallelization Theorem

The most important theorem of our algebra is the parallelization theorem which was given

as Theorem 4 in section 3.5.1 on page 63:

Ma ⊥ Mb, Ma ⊥ Mr, Mb ⊥ Mq, Mq ⊥ Mr⇒

 〈Ma | Mb | Mp; Mq ; Mr ; Ms〉\S =

〈Ma | Mb | Mp;〈Mq | Mr〉; Ms〉\S =

〈Ma | Mb | Mp; Mr ; Mq ; Ms〉\S

where S = Sort(Ma) ∪ Sort(Ma) ∪ Sort(Mb) ∪ Sort(Mb) ∪ Sort(Mq) ∪ Sort(Mq) ∪ Sort(Mr)

∪ Sort(Mr). The proof for this theorem is rather complicated. We will first outline the proof

approach, then give the theorem proof assuming that the needed lemmas are true, and final-

ly prove the lemmas.

The heart of the proof is to show that no matter what states Ma and Mb are in when Mp goes

idle (call these states A and B), if Ma and Mb can reach states A′ and B′ when both Mq and

Mr have gone idle (Ms has just been activated) then Ma and Mb can reach those states regard-

less of whether they interact with Mq ; Mr or 〈Mq × Mr〉 or Mr ; Mq. Next, we show that once

Ms has been activated only the states of machines Ma and Mb at the beginning of the interac-

tion can influence the subsequent behavior of the composition.

Our proof will be based upon the definition of failures equivalence. Recall that failures

equivalence says that:

1 each machine has a trace t if and only if the equivalent machine also has a trace

t, and

Page 160

Revised 1/28/99

2 each machine can reject a set S after trace t if and only if the equivalent machine

also can reject a set S after trace t.

For the sake of discussion, we will call the initial states of these three configurations X, Y

and Z, with:

X≡ 〈Ma | Mb | Mp;〈 Mq ; Mr 〉; Ms〉\S

Y ≡〈Ma | Mb | Mp;〈Mq | Mr〉; Ms〉\S

Z≡ 〈Ma | Mb | Mp;〈 Mr ; Mq 〉; Ms〉\S

We begin with a simple lemma that establishes that the failures of a state with no observable

actions of its own are simply the union of the failures of its successors.

Lemma 28

∀a≠1:∈Act ¬∃S′s.t. S →a S′ ⇒

Failures(S) ={(s,A) | S →1 S′ and (s,A)∈Failures(S′)}

Proof: We begin by recalling the definition of failures and initials:

Failures(S) = {(s,A) | ∃S′s.t. S S′ and A∩Intials(S′)=∅}

Intials(T) = {a:∈Act | ∃T′s.t. T T′}

⇒s

⇒
〈a〉

Page 161

Revised 1/28/99

We note that if S has no transitions other than 1 then for all successors S′, Intials(S) =

∪S′Intials(S′), Intials(S′) ⊆ Intials(S), and therefore A-Intials(S)⊆A-Intials(S′).

Therefore every failure of S is also a failure of S′.

We now prove lemma about the behavior of the three machines between the time that Mp

goes idle and Ms is activated.

Lemma 29

Let A be a possible state of Ma at the time that Mp goes idle, and similarly let B be a possible

state of Mb at the time that Mp goes idle. Now let Let A′ be a possible state of Ma at the time

that Ms goes active, and similarly let B′ be a possible state of MB at the time that Ma goes

active. Then:

A|B|〈Mq;Mr〉 A′|B′ (70)

A|B|〈Mq | Mr〉 A′|B′ (71)

A|B|〈Mr;Mq〉 A′|B′ (72)

where the term αc is the activation action for the term in braces, and ιc is the idle action for

this term.

Proof: Expanding the terms we have, for X, the following transition as Mp goes idle:

A|B|(αcαq.)*|αq.Mq|(ιqαr.)*|αr.Mr|(ιcιr.)* A|B|0|Mq|(ιqαr.)*|αr.Mr|(ιcιr.)* (73)

⇒
αc,ιc

⇒
αc,ιc

⇒
αc,ιc

⇒
αc

Page 162

Revised 1/28/99

where Mq is the first state of Mq after activation and Mr is the first state of Mr after activation.

Strictly speaking, the third term on the right should still be (αcαq.)*, but since αc can never

happen again until the entire machine (X) is started again, we note that it is behaviorally

equivalent to 0 and use 0 to indicate this.

Now Mq is free to interact with A, but may not interact with any of the other terms due to

orthogonality until it goes idle, at which time an interaction with (ιqαr.)* will occur. We

also note that B will not change state by interacting with other terms since it is orthogonal

to all but αr.Mr, and interactions with this term cannot occur until after αr has occurred.

Interactions between Mq and A can continue until Mq goes idle, at which point we have:

A|B|0|Mq|(ιqαr.)*|αr.Mr|(ιcιr.)* A′ |B|0|0|0|Mr|(ιcιr.)* (74)

again using 0 to represent terms that are inactive. Note at this point that A has transitioned

to A′, and that A′ is orthogonal to the remaining terms. Therefore A′ is already in its final

form (we assume, without loss of generality, that A′ has already completed whatever silent

transitions that it is going to make). Now Mr and B are free to interact until Mr goes idle, at

which point B has transformed to its final state B′. Thus we have:

A′ |B|0|0|0|Mr|(ιcιr.)* A′|B′|0|0|0|0|0 (75)

Putting (73), (74) and (75) together, we get (70), which is the desired result for X. The der-

ivation for (72) is similar. We now turn to the derivation of (71).

Expanding the terms we have, for Y, the following transition as Mp goes idle:

⇒

⇒
ιc

Page 163

Revised 1/28/99

A|B|(αcαqαr.)*|αq.Mq|αr.Mr|(ιcιqιr.)* A|B|0|Mq|Mr|(ιcιqιr.)* (76)

where Mq is the first state of Mq after activation and Mr is the first state of Mr after activation.

Now Mq is free to interact with A, but Mq and A may not interact with any of the other terms

due to orthogonality until Mq goes idle, at which time an interaction with (ιcιqιr.)* will oc-

cur. Similarly, Mr and B are free to interact with each other, but Mr and B may not interact

with any of the other terms due to orthogonality until Mr goes idle, at which time an inter-

action with (ιcιqιr.)* will occur. At this point we have:

A|B|0|Mq|Mr|(ιcιqιr.)* A′|B′|0|0|0|0|0 (77)

Putting (73) and (77) together, we get (71), which is the desired result for Y.

We conclude by observing that in each case the sole determining factors for the final state

A′ was the initial state A and the machine Mq. Similarly, the final state B′ was determined

entirely from the initial state B and the machine Mr.We thus conclude that our lemma is,

indeed, valid.

Proof of Theorem 4

We show that the Failures(X) = Failures(Y) = Failures(Z). To show this, we must show

that the possible traces s are the same for all three machines, and that after each trace s the

set of failures (sets of pairs of the form (s,A)).

Considering the set of traces first, we note that for traces involving just the actions of Mp,

the behavior of all three machines is determined entirely by Ma | Mb | Mp since the other

⇒
αc

⇒
ιc

Page 164

Revised 1/28/99

machines have not been activated yet. Thus the traces up to the time that Mp goes idle are

identical for all three machines, and therefore all three machines can reach the same set of

A|B states for Ma | Mb. We then note that by Lemma 29 that the set of states A′|B′ reachable

from A|B are the same for all three machines (note that no observable actions have oc-

curred). We further note that after Ms is activated, the behavior of the machine is determined

entirely by A′|B′| Ms, since the other machines are now idle. We therefore conclude that the

set of possible traces for all three machines are the same.

Now we turn to the consideration of failures. Let S′ be a state that we have reached via the

sequence s. We consider three cases:

Case 1: S′ is a state after Ms is activated. Then the same state is reachable in all three ma-

chines (established in the trace argument). Since the failures are determined entirely by sub-

sequent behavior, exactly the same failures are possible for all three machines.

Case 2: S′ is a state after Mp goes idle and before Ms is activated. By Lemma 28, the failures

of this state are subsumed by the union of the failures of the A′|B′ states that are possible

when Ms is activated. Furthermore, in order to reach S′, we had to go through an A|B state

in which Mp went idle. The failures of the A|B state are also failures of the machine after s.

By Lemma 28, the failures of the A|B state subsume the failures of the S′ state. Lemma 28

also tells us that the failures of the A|B state are the union of the failures of all of the A′|B′

states that can be reached from the A|B state. Lemma 29 tells us that the same set of A′|B′

states are reachable in all three machines, and therefore the failures of all three machines

for this A|B state are the same. Since the failures of S′ are subsumed by the A|B state, we

conclude that its failures are also failures of the other two machines.

Page 165

Revised 1/28/99

Case 3: S′ is a state before Mp goes idle. From the definition of failures, we see that the fail-

ures of the state are determined by the initials of the state. Now the initials are either actions

of Mp or Ms. If the initial is an action of Mp, then it is a possible initial for all three machines

since the operation of the machines prior to idling Mp is identical for all three machines. If

the action is an action of Ms, then there had to be an A|B state and an A′|B′ on the path from

S′ to the state in Ms reached by the action. By Lemma 29 this same transition is possible in

the other machines as well, and therefore the same action is an initial of this state for all

three machines. Since the initials of S′are the same in all three cases, the failures of S′ are

the same.

Lemma 30 Unique Factorization of Actions

Here we show that factorization of an action into orthogonal actions belonging to the same

sort is unique up to =. Let Sa ands Sb be two sorts, with Sa⊥Sb. Let a1,a2,b1,b2,γ be ac-

tions, with a1b1 = γ = a2b2, Atom(a1)⊆Sa, Atom(a2)⊆Sa, Atom(b1)⊆Sb, Atom(b2)⊆Sb.

Then we have:

a1b1 = γ = a2b2 implies a1=a2 and b1=b2

1: Since (Act ,×,1) is an Abelian group (in particular, it is commutative and

associative), we can define a canonical form for each element γ∈Act as a product

of primitive actions, each taken to some power: g1
i×g2

j×g3
k×.... If γ1 and γ2 are

both represented by the same canonical form, then γ1=γ2.

2: Let us consider the canonical form of γ. Since Sa⊥Sb, each primitive action (except

for 1) belongs to either Sa or Sb. The action 1 belongs to both, and without loss of

Page 166

Revised 1/28/99

generality, we shall assume that 1 is a member of every action. Now for each

primitive action of γ (except 1), if the action belongs to Sa, the it must appear in

both Atom(a1) and Atom(a2), since, by definition, it cannot be in Sb, and therefore

cannot be in Atom(b1) or Atom(b2). Since these are the only primitive actions in a1

and a2, we have Atom(a1) = Atom(a2). Similar arguments can be use to establish

that Atom(b1) = Atom(b2).

3: Let us again consider the primitive actions of γ, this time considering the number of

times that each atom occurs. Since a1b1 = γ = a2b2, then if atom gi (gi ≠1) occurs

n times in γ, it must occur n times in a1b1 and a2b2 as well. If gi ∈Sa then

gi∈Atom(a1) and gi∈Atom(a2) and occurs in a1 and a2 exactly n times. Similarly,

if gi ∈Sb then gi∈Atom(b1) and gi∈Atom(b2) and occurs in b1 and b2 exactly n

times. Thus both a1 and a2 have the same canonical form, and b1 and b2 have the

same canonical form. Thus a1 = a2 and b1 = b2. Q.E.D.

Lemma 31 Unique Factorization of Agents

If E1⊥F1, Sort(E1)=Sort(E2), Sort(F1)=Sort(F2) then

E1|F1=E2|F2 implies E1=E2 and F1=F2

Lemma 32 Interleaving Lemma

A⊥B implies a∈Traces(A) and b∈Traces(B) iff ∀c∈Comp(a,b) c∈Traces(A|B)

Page 167

Revised 1/28/99

In the forward direction this is just the definition of Traces(A|B). In the reverse direction

we simply observe that because A⊥B the factorization of c into orthogonal components is

Application of Theorems and Corollaries

B.2 Proof for Change of Scope Theorem

The proof of Theorem 5 is relatively simple. This theorem states:

Ma ⊥ Mx, Mc ⊥ Mx⇒

〈Ma;〈Mb | Mx〉; Mc〉\S=〈Mx | Ma;Mb; Mc〉\S

where S = Sort(MX).

Since Mx cannot interact with either Ma or Mc, and the actions of Mx are hidden, then the trac-

es of both configurations are the same.

Since all of the actions of Mx are hidden, then the actions of Mx are part of the refusal set for

all states of both configurations. Thus the fact that Mx is actually in a different state in the

two configurations during the time that Ma and Mc are operating does not affect the refusal

sets.

Since the traces are the same and the refusals are the same, the two configurations are fail-

ures equivalent.

Page 168

Revised 1/28/99

C Masking Union Properties and Visibility Proofs

C.1 Masking Union Properties

The proofs of the following properties follow simply from the definition of the masking

union, and are not given. In the following, the homograph relations H(a,b) is assumed to be

any arbitrary relation.

Idempotence:

A ∪m A = A (78)

Left Identity:

∅ ∪m A = A (79)

Right Identity:

A ∪m ∅ = A (80)

Masking union is distributive over union:

 A ∪m (B ∪ C) = (A ∪m B) ∪ (A ∪m C) (81)

Union is not distributive over masking union. Consider the following expression, and an

element in A that has a homograph in C. The expression on the left would result in both

elements being in the result, while the expression on the right would only have the element

from A in the result.

A ∪ (B ∪m C) ≠ (A ∪ B) ∪m (A ∪ C)

Page 169

Revised 1/28/99

The masking union is not commutative.

(A ∪m B)≠ (B ∪m A)

The masking union is associative if and only if the homograph relation being used is tran-

sitive.

(A ∪m B) ∪m C ≠ A ∪m (B ∪m C)

Subsumption: Given: X ⊆ A

A ∪m X = A (82)

The converse is not true:

X ∪m A≠ A

A ∪m B = A ∪m (X ∪ B) (83)

Additional properties:

(A ∪m B) ∪ A = A ∪ (A ∪m B) = A ∪m B (84)

(A ∪m B) ∪m (A ∪m C) = A ∪m (B ∪m C) = (A ∪m B) ∪m C (85)

(A ∪ B) ∪m B = A ∪ B (86)

(A ∪ B) ∪m (A ∪ C) = (A ∪ B) ∪m C (87)

Theorem 33 Computation of Direct Environments

Page 170

Revised 1/28/99

Given:

a an ordered set LD of k declarations {d1, d2,... dk}

b an initial direct environment DE0

c an empty set LD 0

We define a partial local declaration set LD i, as follows:

LD i = {di} ∪ LD i-1

 and the direct environment associated with each declaration:

DEi = LD i
∪
m DEi-1

Then we claim that

DEk = LDk ∪m DE0

Proof by Induction on i:

Basis: i = 1

1: DE1 = LD1 ∪m DE0 Definition of DEi

Inductive Step:

1: DEi = LD i
∪
m LD i-1 ∪m DE0 by inductive hypothesis

Page 171

Revised 1/28/99

2: DEi = LD i
∪
m DE0 1, Eq. (82) & Def’n of LD i

Q.E.D.

Page 172

Revised 1/28/99

References
[Aho74] Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D., The Design and

Analysis of Computer Algorithms, Addison-Wesley (1974)

[Amad86] Amadio, Roberto, Bruce, Kim B., and Longo, Giuseppe, "The Finitary
Projection Model for Second Order Lambda Calculus and Solutions to
Higher Order Domain Equations," in Proceedings, 1986 Symposium on
Logic in Computer Science, document order number 720, IEEE Computer
Society Press order number 720, 1730 Massachusetts Avenue N.W.,
Washington D.C. 20036-1903 [1986]

[Bjor80] Bjorner, D. and Oest, O.N., Eds, Towards a Formal Description of Ada,
LNCS Vol 98, Springer-Verlag (1980)

[Broo83] Brookes, Stephen D, A Model for Communicating Sequential Processes,
Ph.D. thesis, University College, Oxford University (1983)

[Brow89] Brown, Paul C., Oconnor, D.M., and Kelliher, Tim, "An Extended Overload
Resolution Algorithm that allows Types and Subprograms as First Class
Objects," internal document, GE Corporate Research and Development
Center, Schenectady, New York (1989)

[Brow90] Brown, Paul C., Computing Visibility in Programming Languages,
Technical Report 90CRD098, GE Research and Development Center,
Schenectady, New York 12301 (1990)

[Broy87] Broy, Manfred and Wirsing, Martin, "On the Algebraic Definition of
Programming Languages," ACM TOPLAS Vol. 9., No. 1, (1987)

[Bruc84] Bruce, Kim B., and Meyer, Albert R., "The Semantics of Second Order
Polymorphic Lambda Calculus," in Semantics of Data Types (Kahn,
MacQueen and Plotkin, editors) pp 131-144, Lecture Notes in Computer
Science, vol 173, Springer Verlag [1984]

[Bruc87] Bruce, Kim B., Meyer, Albert R., and Mitchell, John C., "The Semantics of
Second Order Lambda Calculus," preprint (1987)

[Eaker91a] Eaker, Charles E., "Creating Software Should Be Easy," (unpublished) GE
Corporate Research and Development Center, Schenectady, New York
(1991)

[Eaker91b] Eaker, Charles E., "How to Create Software: A Guide to the Perplexed,"
(unpublished) GE Corporate Research and Development Center,
Schenectady, New York (1991)

Page 173

Revised 1/28/99

[Ende73] Enderton, Herbert B., A Mathematical Introduction to Logic, Academic
Press (1973)

[Good86] Goodenough, John B. The Ada Compiler Validation Capability
Implementor’s Guide, Version 1, SofTech, Inc., Waltham, Ma. 02254-9197
(1986)

[Gord79] Gordon, Michael J.C., The Denotational Description of Programming
Languages, Springer-Verlag (1979)

[Gogu77] Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B., "Initial
Algebra Semantics and Continuous Algebras," JACM Vol. 24, No. 1 (1977)

[Hoar69] Hoare, C.A.R., "An Axiomatic Basis for Computer Programming,"
Communications of the ACM, Vol. 12, No. 10 (1969)

[Hoar85] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall
International (1985)

[LRM] Ada Programming Language, ANSI/MIL-STD-1815A (1983)

[Mann74] Manna, Zohar, Mathematical Theory of Computation, McGraw Hill (1974)

[McCr82] McCracken, Nancy, "A Finitary Retract Model for the Polymorphic
Lambda Calculus," Technical Report 83-2, Syracuse University [1982]

[McN82] McNaughton, Robert, Elementary Computability, Formal Languages and
Automata, Prentice-Hall (1982)

[Mend87] Mendelson, Elliott, Introduction to Mathematical Logic,Wadsworth &
Brooks/Cole (1987)

[Miln80] Milner, Robin, A Calculus of Communicating Systems, LNCS Vol 92,
Springer-Verlag, (1980)

[Miln83] Milner, Robin, "Calculi for Synchrony and Asynchrony," Journal of
Theoretical Computer Science, Vol. 25, pp 267-310 (1983)

[Miln89] Milner, Robin, Communication and Concurrency, Prentice Hall
International (1989)

[Mitc84] Mitchell, John C., "Semantic Models for Second-Order Lambda Calculus,"
in Proceedings of the 25th Annual Symposium on Foundations of Computer
Science, IEEE document 84CH2085-9 (1984)

[Modu88] Modula-2 Working Group, "A Formal Definition of Modula-2," draft
version dated 30 June, 1988

Page 174

Revised 1/28/99

[Moss83] Mosses, Peter, "Abstract Semantic Algebras!," in Formal Descriptions of
Programming Concepts II, D. Bjørner (ed), North-Holland (1983)

[Moss84] Mosses, Peter, "A Basic Abstract Semantic Algebra," in Semantics of Data
Types, LNCS Vol 173 (1984)

[Rees86] Rees, Jonathan and Clinger, William (eds), "Revised3 Report on the
Algorithmic Language Scheme," SIGPLAN Notices, Vol. 21, No. 12
(1986).

[Scot76] Scott, Dana, "Data Types at Lattices," in SIAM Journal of Computing, Vol
5, No. 3 (1976)

[Scot82] Scott, Dana S., "Domains for Denotational Semantics," LNCS Vol 140,
Springer-Verlag (1982)

[Stee84] Steele, Guy L., Common Lisp, The Language, Digital Press (1984)

[Stoy77] Stoy, Joseph E., Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory, MIT Press (1977)

[Wirt82] Wirth, Niklaus, Programming in Modula-2, Springer-Verlag (1982)

Page 175

Revised 1/28/99

A
abort action 109
AbstactType

relation 98
abstract type 42

machine 39
abstract types 7
AbstractIndex

semantic function 103
action 22

abort 109
activate 37
composition 16
composition operator 16
defining machine 37
identity 16
idle 37
input 36
optput 36

action operator
agent 19

actions 16
atomic 16
atomic inverse 16
mixed 37
primitive 16

activate action 37
activation machines 57
Ada Homograph 73
agent 17

action operator 19
constant 19, 21, 140
descendant of 27
morphism operator 21
product operator 20
restriction operator 21
successor of 27
summation operator 20
transition rules 22

morphism 25
restriction 24
summation 23

transition rules,product 24

Page 176

Revised 1/28/99

variable 19
agent expression 17, 19
algebra

machine 62
ArgSig

semantic function 99
atom

operator 17, 135
atomic actions 16
atomic inverse actions 16

B
behavioral equivalence 33

C
change of scope theorem 7
complex type 102
composition

operator
machine 29

composition operator
action 16

constant
agent 21, 140

constructive semantics 6
D

DE 75
declaration 69
declarative block 75
Def

operator 37
defining machine

of an action 37
descendant

of an agent 27
direct environment 70, 75
dot notation 88

Ada
first approximation 91

E
elaboration 8, 94
environment 69, 97

extended 72
equivalence

behavioral 33

Page 177

Revised 1/28/99

G
generic

state machine 17
generic types 7

H
HCCS 6
homograph 7
Hybrid Calculus of Communicating Systems 6

I
identity action 16
idle action 37
inheritance

multiple 105
input actions 36
interaction machines 48, 54
inverse operator

action 16
L

labeled transition system 18
LD 75
local declarations 75

M
machine 18

abstract type 39
agent expression 19
labeled transition system 18
operator

composition 29
sort 19
state type 39
type 39
value 48

Machine Algebra 7
machine algebra 62
machines

interaction 48
masking union 7, 77
mixed actions 37
morphism operator

agent 21
multiple inheritance 105

N
New

Page 178

Revised 1/28/99

semantic function 101
O

operator 16
action

inverse 16
def 37
sort 27

orthogonal 38
orthogonality 7
output action 36
overload resolution 71
overloaded 71

P
parallelization theorem 7, 160
primtive actions 16
product operator

agent 20
R

Ref
semantic function 100

reference 69
relation

AbstractType 98
Signature 98
StateType 98

restriction operator
agent 21

RetSig
semantic function 100

Root
syntactic function 106

S
scope 75
semantic function

AbstractIndex 103
ArgSig 99, 100
New 101
Ref 100
Sig 100
Type 99
TypRef 101

Sig
semantic function 100

Page 179

Revised 1/28/99

Signature
relation 98

simple type 102
sort

machine 19
operator 27, 147

state machine 18
generic 17

state type
machine 39

state types 7
StateType

relation 98
successor

of an agent 27
summation operator

agent 20
syntactic function

Root 106
T

transition, agent
rules

action 22
morphism 25
product 24
summation 23

transition,agent
rules

restriction 24
Type

semantic function 99
type

abstract 42
complex 102
machine 39
simple 102

type structure 99
TypRef

semantic function 101
V

value machines 48
W

well-behaved 7

