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Abstract

Constructive Semantids an approach to programming language semantics that treats a
program as a constructive specification for an abstract state machine. This abstract machine
is composed of a set of smaller “well-behaved” machines operating concurrently. The exact
combination of machines is determined by the program, with each programming language
construct appearing in the program defining a portion of the composition. The program-
ming language itself specifies a number of primitive machines that form the basic building
blocks of programs. These machines represent the basic operations and data types of the
language. The resulting semantics is relatively easy to understand, an its relationship to the

original program is clear.

Constructive semantics treats many higher level programming language abstractions also
as specifications of state machines, where these machines serve as prototypes for entire sets
of machines. For example, a basic data type in a programming language is modeled as a
state machine, and each variable of the type is modeled as a copy of this machine. Behav-
ioral equivalence of machines provides a basis for modeling abstract data types, in which
behaviorally equivalent machines belong to the same abstract data type. Behavioral equiv-
alence also provides a basis for modeling type hierarchies such as those found in object-

oriented languages with multiple inheritance.

Ada generics and C++ templates are modeled as partial specifications of state machines.
These partial specifications contain variables corresponding to the formal parameters of the
generic or template. The expected values for these variables are state machines. An instan-
tiation of the generic or template is modeled as the state machine defined by replacing each
variable with the state machine corresponding to the actual parameter (usually the proto-

type machine associated with a type or subprogram).
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Page xi

Constructive semantics provides straightforward semantic models for other important as-
pects of programming languages, including concurrency (Ada tasks), elaboration and visi-
bility computations. Several theorems in constructive semantics describe orthogonality (in-
dependence) conditions under which the serial/parallel relationships between machines in
a composition may be modified without affecting observable behavior. The formalism un-
derlying constructive semantics is derived from the well-studied models of Milner’s Cal-
culus of Communicating Systems (CCS) and Hoare’s Communicating Sequential Process-
es (CSP). Behavioral equivalence in constructive semantics is based upon Hoare’s concept

of failures equivalence.
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1.0 Introduction and Historical Review

Semantics is “The relation between signs or symbols and what they signify or Hetate.

most programming languages, the rules for identifying the signs and symbols (the lexical
elements of the language) are well defined and easily understood, as are the rules for defin-
ing the legal structures of these elements (the syntax). Less well defined evadépts

that aredenotedoy the elements of the language andrétationshipbetween the symbols

and the concepts. These concepts, and the relationship that they bear to the symbols of the

language, are the subject of this thesis.

To set the stage for this work, we must ask two questions: What is the purpose of seman-
tics? and Who are the intended users of semantics? Presumably the intent of semantics is
to describe the meaning of a program in a way that is, in some sense, more understandable
than the program itself. The driver for increased understanding may be the need for more
precision (finer detail), or the need to better define an abstract concept (“...juss @hat

type, anyway?”) In either case, the semantic model mushéerstandabléo be of prac-

tical value.

Who are the intended users of semantics? Ultimately, we would like the audience to be the
body of language designers, complier and interpreter writers, and software engineers that
will work with the language whose semantics is being defined. This places great demands
upon the semantics. Providing an elegant mathematical model in category theory, for ex-
ample, is not going to help the average software engineer understand the language better.
On the other hand, describing semantics with readily understood but somewhat informal
models is not going to provide the precision necessary to illuminate the nooks and crannies

of the language and clarify what otherwise might be ambiguities.

1. Funk & Wagnalls Standard Dictionary of the English Language, International Edition (1962)
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1.1  Current Approaches to Semantics

There are four primary approaches to semantics commonly found in the literature today,
differing mainly in the abstractions that they use to model a progpanotational seman-
ticstakes a functional approach, translating program elements into lambda calculus expres-
sions, and thus into the abstract mathematical domawelwésandfunctions Algebraic
semanticss similar to denotational semantics, but translates programs into abstract alge-
bras instead of the lambda calcul&giomatic semantidsas a slightly different flavor, giv-

ing assertions about the behavior of program elements in axiomaticOperational se-

manticsmaps programs onto the behavior of some abstract machine.

To date, none of these approaches has yet yielded (to the best of our knowledge) a complete
semantics for a strongly typed production programming language. Even those that have
been partially completed are difficult to understand [Modu88][Bjor80]. We believe that
this lack of success does not necessarily indicate that the models being used are fundamen-
tally inappropriate for the task at hand. We believe that the real problem is that a higher
level of abstraction, which is in turn built upon one or more of these models, is necessary
to bridge the gap between the model and the programming language and clarify the rela-
tionship between the program and the model. Before expanding upon this concept, let us

briefly examine the four popular models.

1.1.1 Denotational Semantics

Denotational semantics translates program elements into lambda calculus expressions, thus
describing the meaning of the program in terms of the abstract mathematical domains of
values and mappings (functions) between the values [Scot76][Scot82][Stoy77]. Semantics

for more elaborate languages treat types and functions themselves as values in this domain,
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and add appropriate mappings to represent parameterized types and functions [Amad86]

[Bruc80][Bruc84][McCr82][Mitc84].

Since the denotational model is functional in nature, the resulting semantic expressions typ-
ically take two fairly complex values as arguments and return these as secondary values
(possibly in modified form) along with the primary value being returned from the expres-
sion. These complex values are the state of the “memostbag and “the rest of the pro-

gram” orcontinuation In general, a semantic expression may use and/or modify both the

store and the continuation in the process of computing the value that it returns.

This passing of the store and continuation through virtually all semantic expressions makes

it difficult to understand the scope of effect of changes in these variables. While it may be
obvious from a local examination of a particular semantic expression whether it uses and/
or modifies the store, it isot obvious from a local examination whetlilee rest of the pro-
gramwill use or modify these same values. Since there expbcitindication of the pos-

sible interactions between any two semantic expressions, the effect of each expression upon
the rest of the program is only partially specified by the expression itself. Assessing the rel-
ative dependence or independence of semantic expressions thus requires an analysis of the
expression continuations and stores at every point in the program where the expressions in

guestion are used.

Unfortunately, software engineers do not normally think of the modules of a program as
pure functions. In fact, programmers tend to view modulesaahines with statthat re-

spond to inputs bghanging stat@nd/omproducing outputslt is our belief that denotation-

al semantics has not been a more successful vehicle for communicating the semantics of

programming languages precisely because information concerning the scope of effect of
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state changes and the possible interactions between semantic model elements is difficult to

extract from the model.

1.1.2  Algebraic Semantics

Algebraic semantics [Broy87][Gogu77][Moss83][Moss84], like denotational semantics,
seeks to map programs onto mathematical domains, with the distinction that in algebraic
semantics multiple domains (algebras) are being used. Frequently the program itself is in-
terpreted as defining and then using one or more algebras. Unfortunately, algebraic seman-
tics, like denotational semantics, has a difficult time representing state. Variables, for ex-
ample, are represented as constants in an algebra characterizing the data type. Changing the
value of the variable creates a new algebra that is identical to the previous algebra except
for the value associated with the constant. As with denotational semantics, we believe that
this will limit the usefulness of algebraic semantics as a communications medium between

language designers, compiler writers and software engineers.

1.1.3 Axiomatic Semantics

Axiomatic semantics [Hoar69][Mann74][Ende73][Mend87] brings the power of mathe-
matical logic to bear upon programs and programming languages. Unlike the other seman-
tic approaches, axiomatic semantics is not constructive, which requires the user of the se-

mantics to view the program from a slightly different perspective.

Axiomatic semantics characterizes a program or program element by constraint: each axi-
om specifies some relationship that the program must be faithful to. In using axiomatic se-
mantics, one is continually faced with the question of sufficiency with respect to the set of
axioms provided. If the desire is simply to specify some minimum set of properties that a

program or element must meet, then any consistent set of axioms is sufficient. If, on the
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other hand, the desire is tompletelyspecify a program to the extent that any two pro-
grams that are consistent with the axioms are guaranteed to behave in exactly the same

manner under all circumstances, then a notion of equivalence is required. We suggest that

Hoare’s failures equivalendeyhich we shall also take as our notion of behavioral equiv-
alence in this work, offers a good definition of equivalence for this purpose, and also pro-
vides a basis upon which to determine whether a given set of axioms is complete. Further-
more, as we shall see in the thesis itself, the notiabsifacttype that we will develop is

also based upon this equivalence, thus providing a formal link between our model and this

stronger form of axiomatic semantics.

1.1.4  Operational Semantics

Operational semantics models a program by mapping program elements onto the opera-
tions of an abstract machine, thus defining the behavior of the program in terms of the be-
havior of this abstract machine. In early operational semantics, this machine was often a
relatively simple abstract computational engine whose behavior was defined by a set of
rules.The selection of a particular abstract machine to be used as the basis for the semantics
was frequently motivated as much by the availability of a well understood abstract machine
as it was by considering the appropriateness of the abstract machine for modeling a partic-
ular language. Although this early form of operational semantics provided an explicit mod-
el for the notion of program state, the mapping from the state of higher level programming
abstractions onto the state of the an abstract machine (like a stack machine) was often com-
plex, thus limiting the understandability of such models. Additionally, it has been unclear

how to model higher level program abstractions such as data types in operational semantics.

1. [Hoar85] p. 130, axioms C0-C3. Axioms C4-C6 extend failures equivalence to consider diver-
gence (infinite computations) as well. We have left the issue of divergence open in this work.
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More recently, operational semantics has taken a theoretical turn. Milner
[MiIn80][Miln83][MiIn89] and Hoare [Hoar85] have both proposed calculidefiningab-
stract machines with well understood properties and operators. With this capability in hand,

one can now entertain the thoughtaostomizinghe abstract machine to suit the language.

In this thesis we will carry this thought through to its logical conclusion: the program itself

will be interpreted as theefinition of an abstract machine. Milfehas explored some of

the possibilities in this area, using CCS to model a simple imperative language with con-
currently executing subprograms and shared variables. This work left open the question of
how to model call-by-reference in subprogram calls, and did not address at all the area of

types and type checking.

1.2 Contributions

We take a constructive approach to semantics in which the entire program is considered to

be thedefinition of an abstract state machine and its initial state. We call this apm@ach

structive semanticsWe have carried the earlier work of MilAdéorward into a more gen-
eral formulation capable of modeling types, type hierarchies, type checking, visibility com-

putations and overload resolution.

To give a formalism to our semantics, we define a language for specifying state machines
that we call aHybrid Calculus of Communicating System#CCYS), since it borrows
heavily from Milner's CCS and Hoare’s CSP. We show that Hoare’s failures equivalence
is a congruence relation in this calculus, and define this to be our notion of behavioral

equivalence.

1. [Miln89] pp. 170-185.
2. Ibid.
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We definestate typeso be constructively specified sets of isomorphic state machines, and
abstract typeso be constructively specified sets of behaviorally equivalent machines. This
behavioral equivalence then defines a partial ordering on types, and provides a formal basis
for type hierarchies and the more complex type schemes of multiple inheritance. We define
generic typedo be parameterized specifications for state types, where the parameters are,

themselves, other state machines.

Rather than translating a program directly into HCCS, we define an intermediate language
that we call avlachine Algebra This offers considerable notational simplification over
HCCS, since a single term in the machine algebra corresponds to both a term and a set of
defining equations in HCCS. We show that by restricting the use of HCCS in defining ma-
chines, we can create a claswefl-behavednachines whose starting and stopping behav-

ior is well defined. We show that this property is preserved by the combinators of our ma-
chine algebra. We also show how restricting the use of some actions to guarantee that they
only appear on one machine can be used to structure entire classes of machines that are, by
construction, independent of one another. We definerthegonalityrelation of machines

that cannot interact with each other.

The usefulness of our machine algebra approach is demonstrated through two theorems, the
parallelization theoremand thechange of scope theoremeach stating a set of orthogonal-

ity conditions under which a change in the serial/parallel relationships between machines
in a machine algebra expression may be altered without affecting the observable behavior

of the state algebra expression.

We review the notion of visibility in programming languages. We provide a formal defini-
tion of the notion ohomograph and propose a modified set union operation that we call

amasking unionfor use as a fundamental operation in defining the visibility of program
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elements. We demonstrate the use of the masking union in modeling a wide variety of dif-

ferent visibility semantics.

Finally, we show how to use machine algebra and HCCS to give the constructive semantics
for a programming language. We give a formal definitiorlaborationas the process of
converting a program into a state machine. We reconcile three seemingly disparate notions
of type, giving a common model based on state types. We show that programs, subpro-
grams and type declarations all define state types, thus providing a very general and uni-
form model for these apparently disparate concepts. We show tletdtloeationof a vari-

able declaration and tlwalling of a subprogram both cause instances of the state type to be

created. We demonstrate, in a limited form, the use of generic machines.

Our model has a number of advantages over other semantic approaches. First, it is com-
pletely language independenand thus provides a precise neutral ground for comparing
and contrasting languages and language features. Second, while we do not have a normal
form for expressions, we claim that our semantidsilly abstractin the sense that the
equivalence classes of semantic expressions under behavioral equiasdghedully ab-

stracted semantics. Third, our semantics provides a uniform treatment of subprogram calls
regardless of whether the subprogram is a function or a procedure, and regardless of wheth-
er the call occurs as a statement or as part of an expression. Finally, our semantics provides
a domain for constructing accurate models of implementation strategies and formally com-
paring them (via behavioral equivalence) to an abstract semantics of a language, with the
added advantage that these comparisons can be meaningfully carried out on fragments of

the language.
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1.3 Thesis Outline

Chapter 2 lays the groundwork for our semantics. In this chapter we define HCCS, a lan-
guage of states and transitions used for describing state transition systems, which we will
use as means of defining state machines. We explore the mechanism for intéection
tweenstate machines via the actions of the machines. We debelesaioral equivalence
between machines, and show that this equivalence is a congruence relation in HCCS. We
define theorthogonalityof two machines to be the inability of the machines to interact with
each other. We defirgtate typeso be sets of state machines that are isomorphic under an
operator mapping the actions of one machine onto the actions of another machine. We de-
fine abstract typeso be sets of machines that are behaviorally equivalent under a similar
mapping. Finally, we introduaeduced Petri netas a convenient means of illustrating in-

teractions between machines.

HCCS is capable of defining a very broad class of machine, much broader than we wish to
use in our semantics. In chapter 3 we turn to defining the constraints that we will impose
upon the machines that are definable in constructive semantics, and raise our level of ab-
straction, focusing on entire machines and their relationships with one another. We define
well-behaved machines to be machines with well defined initialization and termination
properties.We define machine algebraa notation for describing the serial/parallel rela-
tionships between machines. This algebra will form the notational basis for our semantics.
We define several basic classes of machinalste machinegswhich are mutually orthog-

onal machines intended to store valueteraction machinegransfer values between ma-
chines, possibly computing values in the processaatidation machineserve to coordi-

nate the starting and stopping of machines. We give an informal example of how these three
classes of machine can be used to give a semantics to a block of code containing declara-

tions and statements. We observe that the resulting expression appears to be, at first glance,
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arbitrary. We then give two theorems that state orthogonality conditions under which ma-
chine algebra expressions can be transformed into other behaviorally equivalent expres-
sions. We conclude the chapter by using one of these theorems to show that two apparently

different semantics for an example program are in fact behaviorally equivalent.

In chapter 4 we turn to the topic of establishing the relationship between the identifiers in
a program with the machines that they represent. We defieavémonmento be a map-

ping from identifiers to machines, and quickly see that many environments (many different
mappings) are used in resolving the meanings of identifiers in programming languages. We
define adeclarationto be an association of an identifier with a machine, antegenceo

be the occurrence of an identifier whose association with a machine must be determined
through the examination of declarations in a particular environment We formalize the no-
tion that certain pairs of declarations maybe indistinguishable in the formarhagraph
relation, and discuss the differing definitions of homograph that arise in different program-
ming languages. We then define a modified set union operator knownaskeng union

and show how this operator can be used to model the computation of the contents of envi-
ronments in terms of other environments. These computations determine the visibility of a
given declaration at each point in the program. We explore three different visibility com-
putations used in Lisp and Scheme, and discuss the modeling of some of the more complex

Ada visibility rules, including the selected component or “dot” notation.

In chapter 5 we put the results of the previous three chapters to work and show how they
are used to specify the constructive semantics of a programming language. There are three
basic concepts that underlie our semantic model: firsgxaputing progranis simply a

state machine; secondpeogramis aspecificationfor a state machine. Third paogram-

ming languages simply danguage for specifyingtate machines. Our approach to seman-

tics will be to give the semantics of a program not in terms of a concrete state machine (i.e.
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the computer itself), but rather in terms of an abstract state machine. Our goal is to make
this abstract state machine both precise and easy to understand so that it may serve as an

aid to the practicing programmer and the compiler/interpreter writer.

Obviously giving the semantics of a program as a single giant state machine would be of
little benefit to either the programmer or the compiler writer. Consequently, just as the com-
puter itself is a composition of state machines (ALU, registers, busses, memory, etc.) our
abstract machine will also be a composition of smaller machines. These component ma-
chines are either primitive machines given by the language itself, or other machines that

have been specified elsewhere in the program.

We shall see that a programming language can be viewed as two components: the specifi-
cation of a small number of primitive machines with known properties (the basic data types
and operations of the language); and the specification of a syntax for indicating how ma-
chines are composed to form larger machines. Most languages provide a syntax for first de-
fining new machines and then using them as components of other machines. These syntax
forms are used for user-defined data types, subprograms, packages, tasks and other high-

level abstractions that can be specified in the language.

From the compiler or interpreter writer’s perspective, any behaviorally equivalent state ma-
chine is then a valid implementation of the program. The challenge for them is to establish
the behavioral equivalence of the implementation with the abstract machine given in the
constructive semantics. Here the properties of composition come into play: it is sufficient
to separately establish that each of the component pieces is equivalent and that each com-
position operation is equivalent, since all of the compositions that we shall use preserve be-

havioral equivalence.
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Perhaps the major difference between our abstract semantics and a concrete implementa-
tion is that the abstract machines will not necessarily be finite in number. For example, in
our semantics, a recursive function call will result in a theoretically infinite chain of (iso-
morphic) machines, each one implementing the function, and each one interacting with its
caller (if any) and the machine that it, in turn, calls (we shall see later how information can
be shared between invocations). This leads to a very straightforward model that is easy to
understand and to reason about. However, in actual implementation, the compiler writer
will not want to duplicate the entire machine for each invocation: typically only the data
and the program counter will require additional storage for each invocation. It is then the
compiler writer’s task to satisfy himself that this implementation is behaviorally equivalent

to the abstract semantics.

The term type frequently brings to mind differing and possibly inconsistent concepts. The

three dominant concepts seem to be that a type is either a set ot valbekavioral (in-
terface) specification, or an implementation specification. We show that state types and ab-

stract types together provide a uniform framework for modeling all three concepts.

Not surprisingly, an executing program or subprogram is modeled as a state machine. Here

we must be careful to distinguish betweenaRkecuting machinéself and itsdefinition,

namely the program or subprogram itself. Bxecuting prograns an actual state ma-

chine, similar in nature to a variable. Tdefinitionis a specification of a class of machines,

each one of which executes the program or subprogram. Programs and subprograms are
thus definitions of state types: classes of isomorphic state machines. We shall refer to the

executing machines asstancef the program or subprogram.

1. Or a representative of the set, as is the case in Denotational Semantics.
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We formalize constructive semantics in the following way. We formalize the notion of
elaborationas the process of converting a program into a state machine. We explore three
common concepts of type, showing that they are all subsumed by state types and abstract
types. We then give a formal semantics for a number of programming language constructs
taken from Ada: variables, pointers, subprogram calls and expression evaluation, go-to
statements, exception handling, loops, declarative blocks, record and array declarations,
and program and subprogram declarations. These semantics are given in a style similar to
that of denotational semantics, giving the meaning of each expression as a composition of
the meanings of the sub-expressions. We explore the semantics of declarative blocks, not-
ing how visibility computations affect the form of the semantic expressions. Finally we ex-

plore programs and subprograms, looking at the various alternatives for parameter passing.

Chapter 6 summarizes the current work, drawing some conclusions about how the current

work could be applied and outlining some possibilities for future work.

The appendices contain the details of the mathematical formalisms underlying our work.
Appendix A contains the formal definition of HCCS. Appendix B contains the proofs of
several theorems about machine algebra expressions. Appendix C contains a brief summa-
ry masking union properties and the proof of one theorem regarding visibility computa-

tions.
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2.0 State Machines and Machine Types

In this chapter we define state machines as they will be used in this thesis. In the process,
we will actually be working with state machines on two different levels of abstraction. The
higher of these abstractions is the level of entire machines, where we wish to consider ma-
chines as distinct objects with unique identities. The lower level of abstraction is the level
of states and transitions. As might be expected, we will develop the higher level of abstrac-

tion (machines) in terms of the lower level of abstraction (states and transitions).

Following a discussion of machines (at both levels) and equivalence relations between ma-
chines, we define two notions of typing with respect to machines. We define a machine type
to be a family of isomorphic machines, and we define an abstract type to be a family of be-
haviorally equivalent machines. These definitions will be the basis for our model of types.
Finally, we will conclude the chapter by describing a variant of Petri Nets that we will use

to illustrate the relationships between machines.

2.1  Algebra of States and Transitions: HCCS

It should be realized from the outset that the machine algebra that we will ultimately devel-
op is simply syntactic sugar for a language of states and transitions: every expression in our
machine algebra will have an exact equivalent in the language of states and transitions. In
fact, we will conduct proofs of our theorems about our machine algebra by converting the
machine algebra expressions into the corresponding language of states and transitions and
conducting the proofs in that language. The advantage of the machine algebra is that one
term in the machine algebra (one machine) will expand into agedna family of related
equationsin the states and transitions language. The machine algebra formulation is thus

more compact.
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The states and transitions language used here is basically a hybrid of the operational models

of Milner's CCS and Hoare’s CSP. We shall call this hybrid language HCCS (for Hybrid-

CCS). HCCS is CCS with the following modifications:

1

Instead of using CCS's flat set of actions, we use an abelian group of actions as
employed in Milner's SCCS and ASCCS. This, in conjunction with the modi-
fied composition operator, will allow n-way synchronization between ma-

chines.

Milner's + operator is replaced by the similar operation used by Hoare. We
will use ] to represent this operation. This operator behaves the same as Mil-
ner’s for deterministic choices, but differs in its treatment of non-deterministic
choices. The use of the Hoare operator as opposed to the Milner operator makes

Hoare’s failures equivalence a congruence relation in HCCS.

We alter the definition of Milner’s | operation to allow n-way synchronization

between agents, where CCS only allows binary synchronization.

In the following sections, we summarize the important aspects of HCCS. The discussion in

this chapter, while formal in places, is intended to provide an intuitive understanding of

HCCS. Appendix A provides a formal summary of HCCS, including a semantic model

based upon Milner’s synchronization trees.

211

Actions

The state machines that we shall use in our model are simple extensions of classical finite

state machines. Conceptually, each machine has a number of states, and a number of la-
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beled transitions between stdte®/e shall call the labels on the transiti@wions in

keeping with Milner’s terminology.

In classical finite state machines, each transition of a machine is labeled with a single sym-
bol from a set of symbols, each one of which is primitive. In contrast to this flat structure
of symbols, the set of actions has considerable structure to it. We begin with atsatiof
actions/\ ={a,b,c,...}, a set oftomic inverse actioné\ = {a,b.€,...}, and a uniquélen-

tity action 1. There is a 1:1 correspondence between atomic actions and inverse actions.
The set oprimitive actionsA= AOAO{1} ={..., e,b,a,1,a,b,c,...}. The complete set of

actions is then constructed from the set of primitive actionepgosition operatok and

aninverse operator_. The unique elementplays the role of an identity element with re-
spect to the composition operator. We further note that every element has an inverse. The

set of actions is then recursively defined by:

Al Act

Ua,b UAct:

1) axbUAct
2) alAct

The set of actions and its properties is more completely defined in Appendix A, section A.1

on page 134. We simply note here thatt is an Abelian group.

1. Unlike finite state machines, neither the number of states nor the number of actions is required to
be finite.
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We defineAtom(a) to be the set of primitive actions thats comprised of. For example,
if a andb are primitive actions, theftom(ab) = {a, b}. By extension, ifAis a set of ac-

tions, we definddtom(A) = [, Atom(a). For ALIAct , we defineA* to be the set of ac-

tions generated b andx, andA* be the subgroup generated &y {1}, X and .

As we shall soon see, actions are the means by which machines interact with each other. A
machine can only perform an actiar(take the transition labeled with the actaywhen

another machine with which it is interacting performs the inverse aetiba machine has

a transition labeled with the actiab, then it can only perform that action when other ma-
chines with which it is composed perform the actia@db. Note that this may either be

a single machine performing the actam, or two individual machines performing the ac-

tions a and b.

2.1.2 Machines

At the level of states and actions, HCCS represents states with syntactic expressions that
define the possible future behavior of the state. States come in parameterized and non-pa-
rameterized versions. Fully specified states are knovagests Parameterized states are
known asagent expressionsAgent expressions are allowed to contain variables, whereas
agents are not. Thus a fully specified state machine is one in which all states (agents) are
fully specified (contain no variables), whereas a parameterized state machine is one in

which variables occur in one or more of the expressions defining its states (agents).

In developing our programming language semantics we shall need both fully specified state
machines and machines whose specifications are parameterized. These parameterized ma-

chines we shall caljeneric state machinesor generics for short. A generic can be con-
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verted to a fully specified state machine by providing fully specified state machines as the

actual values of the parameters.

In the following, we shall be using the term agent expression throughout in all definitions.
Since an agent is simply an agent expression without variables, it should be understood that
all of these definitions and related discussions pertain to agents as well. The discussions,
up to but not including the discussion of equivalence, pertain uniformly to both fully spec-
ified state machines and generics. When we discuss equivalence, we shall have to treat ge-

nerics differently than fully specified state machines.

A machine is specified in terms of its states and transitions. To specify a machine, we define
a set of states that we shall ajlentexpressionsa set of labels that we shall caditions
a set of labeled transitions between states, and an initial state. The first three of these we
shall refer to as mbeled transition systenMore formally, dabeled transition systeris

a triple:
(EAct {8 :alAct))

whereE is a set of agent expressiofs;t is a set of actions, and eaéh is a relation

between agent expressions.

A machineis then a four-tuple consisting of a labeled transition system and an initial state
Po. Note that our machines, in contrast with classical finite state machines, do not necessar-
ily have a finite number of states (agents) or a finite number of symbols (actiosts)teA
machineis a machine in which no variables occur in its agent expressions. We shall use
M, M, M,... to represent state machines, Mxly) to represent a generic machine having

parameters x and y.
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From time to time we shall need to compare sets of actions. In practice, we will usually take
the set of atoms used in each set of actions and compare the sets of atoms instead. We shall

call the set of atoms associated with a machinedhaf the machine.

We shall specify our labeled transition systems by giving families of equations that are sim-
ilar to the production rules of a grammar. From this set of equations and a few inference
rules we can derive the set of agents, set of actions and the set of relations that together de-

fine the labeled transition system.

2.1.3 Agent Expressions

The set ofagent expression& includes a number afgent constant¥& = {AB,C,...} and

a set ofagent variablesX'= {X,Y,Z,...}:
KOXUE

Constants can be thought of as names that have been given to particular states (not all states

are necessarily named with constants).

Given some initial members of the set of agent expres&iows now define the full set of

agent expressions recursively as follows:
OEFOE alAct:
Action:

1) aEOE

Informally, a.E means that the agent expressida can perform the acticmand then per-

forms actions associated with the agent expredsion
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Product:
2) E|FOE

E | F means that the agent expressitr@ndF have been combined as machines operating
in parallel with each other. Actions performed by the composition consist of kit
performing an action (asynchronously, independent of the other agent expresbiotn)
performing actionsimultaneouslysynchronous action). We shall provide a more formal

description of the transition semantics later.

Summation:

3 SEOE

gl
whereE; is an independent set of agent expressions frpand | is an index set) E
il
means that the agent expression is a composition of alternative agent expressions, and will
ultimately perform the observable actions specified by exactly one of the expressions in the

set ofE;. There is one summation that we shall have occasion to use frequently, and this is

theinaction machine0:

0=3% E 1)

Because the set of expressions is empty, this machine never performs any actions.

In the special case of a summation involving two machines, we shall write the summation

asELF.
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It is important to note that the operation being defined hevetisliiner's summation op-
erator, but a generalization of Hoar{I's operator to an arbitrary number of terms. As we

shall see, the behavior of the Milner and Hoare operators is the same for observable actions,

but different for the non-observable actibh

Restriction:

4 EADE

E[ A means that the agent expression is the expression speciffeexnept that any ac-
tions not inAtom(A)* are hidden. If an action is hidden, then no agent expression outside
of E may trigger that action. A related operation is to hide just the actions thatAsre in

om(A)*. We shall designate this with the notatiah A, and define this to be:
4a) E\A =E|(Act - Atom(A)*)

Morphism:
5 E@UOE

E[@] means the agent expression specifiedebafter the actions have been mapped as

specified by, where@is a mapping fronAct to Act such thatp@) = @@a) angy1)

=1.

Constant Definitions

1. As we shall see shortly, it is not possible for another machine to determind thatian has
occurred on another machine, hence the notion of non-observability.
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Finally, we define constants by equating the constants with other agent expressions, as in

the following example which defines the constant to be the agent exprEssion

A=E

Constants provide a means for defining recursive expressions. Consider the defining equa-

tions:

A=a.B

B=b.A

Together these equations define a machine that will endlessly perform the action sequence

ab.ab..

2.1.4 Transition Rules

Now that we have a set of agent expressions, we give the rules defining the transitions be-

tween agent expressions.

Action:

aE & E @

This rule says that the agent expressida may make a transition to the agent expression
E when the actioa occurs. (We note that the occurrence of an action means that some oth-

er agent expression, with which this one has been composed in a product, has simultaneous-

ly made a transition with the actian)
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Summation:

Summation has two rules, the first covering observable transitions (transitions involving an

action other thad), and the other covering non-observable actions.

E 3 E, 1
- (OI,a#1)

©)

This rule says that if agent expressiancan be converted into an agent expres§ign

when the observable actienoccurs, then a summatign E; containingE; can also be
il

converted into the agent expressignwhen the actioa occurs. This gives summation the
capability of representing a choice between the possible future [stafsce an action as-
sociated with one of theskjf has been made, the other choices are discarded and the sum-

mation behaves ds would have after making a transition an
E 3 F
E 3 SE[E!/E]

0l igl

(jDI)2 4)

This rule says that if an agent expresdipean be converted into an agent expresEon

when the unobservable actibroccurs, then a summatignE, containingEj can also be
igl

converted into the summatigh E[E {/E] when the actio occurs. Thus non-observ-
il

able transitions in a summation do not cause the other alternatives to be discarded. Only

1. This is an obvious generalization of the (CGiNDference rule of [Broo83] p. 168.
2. This inference rule is both less restrictive and more general than the (F@MPence rule of
[Broo83] p. 168.
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when one of the agent expressions in the summation makes an observable transition via

Rule (3) are the other choices discarded.

Product:

There are three transition rules governing products. The first two cover the cases in which
the machines in the product act asynchronously with respect to each other. The third rule

covers the case in which the machines act synchronously.

E2F

EF & E|F )
FEF

EF 8 E|F ©)

These rules say that if either machine can make a transition, then that machine may make
the transition in the product. Here the other machine takes no action, and the machines op-

erate asynchronously.

E3E F2F
EF2® E|F

(7)

This rule says that if the agent expresdioran be converted into the agent expreskion
when the actiom occurs, and the agent expressfonan be converted into the agent ex-
pressiorF' when the actiob occurs, then the agent expresdiohF that is the product of

these agent expressions can be converted into the agent expkeddfonvhen the action

ab occurs (recall thadb is the product of the actiomsandb).
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One special case of this rule is of particular interest.df, thenab =1 and the compo-
sition does not need to interact with any other machines in order to make the transition. The

following diagram illustrates the transition possibilities of a product:

E|F
E|F E|F EIF
Restriction:
a
Els & FEls (8)

whereSis any subset oAct containingl. This rule says that if the agent expres$ion

can be converted into the agent expreskowhen the actiom occurs, then the agent ex-
pressionE| S (which is the agent expressifmwith its actions restricted to the actions

present inS) can be converted into the agent expresBdriS when the actiom occurs
provided that is a member of. The absence of any other rule for transition of restricted

expressions implies is thatafis not a member o then no transition is possible an

Morphism:
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E 2 F

Eg %2 E g ©)

This rule says that if the agent expresdioran be converted into the agent expreskion
when the actiom occurs, then the agent expresdifip] (the agent expressida with all
of its actions mapped into new actions by the morplgscan be converted into the agent

expressiorE'[@] by the actionf(a).

Constant

lo

(CGE)

|

C E (10)

This rule says that if the const&nts defined to be the agent expresdigmandE can make

a transition t&=' with the actiora, then the constafd can also make a transitionEb with

the actioma.

2.1.5 Determining the Sort of a Machine

The sort of a machine is the set of primitive actions that occur in the labeled transition
system of the machine. Tlert of a state machine is the union of the sorts of the agents in

its labeled transition system. Equivalently, the sort of the machine can be defined by
Atom(Act ), the set of primitive actions that occur in the action set associated with the

machine’s labeled transition system.
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The Sort(E) operation takes as its argument an ageand returns the set of primitive ac-
tions that appear in the agent (the formal definitions of these operations and some resulting

theorems appear in Appendix A section A.6 on page 147).

2.1.6 Constructing a Labeled Transition System from Equations

The transition rules define a relation between agents. We call the set of agents related to a
given agent by an inference rule sisccessorsand the transitive closure of the transition
relation defines the set déscendantsThe set of agents in the labeled transition system is
then the set containing the initial agent and all of its descendadts. tie sort of the initial

agent and its descendants, tiris a superset of the set of actions associated with the ma-
chine. The set of transitions is the set derivable from the initial agent and the transition

rules.

2.1.7 Labeled Transition System Examples

We now give some simple examples of machines and their defining equations. Consider
the following set of equations, which defines the state machine (in this case a finite state

machine) shown in Figure 2.

A =aA,
A, =bA.

It should be pointed out that the set of equations defining a machine is not, in general,

unigue. This same machine could have been specified by the equation:
A =EabA

In this case, we have eliminated the consfgnbut the machine structure is the same.
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Figure 1 Simple State Machine

2.1.8 Interactions Between Machines

Interactions between state machines are simple: two machines interact when one makes a

transition on an action while a second macldimeultaneouslynakes a transition on the

inverseof that action. Transitions are thus synchronous interactions between machines.

This is the only way in which machines may change.state

As an example, consider the labeled transition systems of two machines as shown in Figure

2 and specified by the following set of equations:
MachineA:

A =aA
A, =b.A

MachineB:

B,=a.B;+a.B;
B; =b.B,
Bs=b.B,.
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MachineA MachineB

Figure 2 Interacting State Machines

(Note that we have not given a complete definition of the machines, since we have not spec-
ified an initial state.) If machinA is in statéd;, and machin8 is in stateB,, then machine

A can make a transition to st#igwith thea action at the same time that machimakes

a transition to statB; (or to stateB;) with thea action. Note that there may be non-deter-
minism in machine behavior: machiBecan transition to either stab or stateBg with

thea action.

The joining of machines together so that interactions are possible we shall calinbe-
sition of machines, and we shall indicate composition with the syinleiting A|B for
the composition of the machinfsandB shown in Figure 2. Formally, this is defined to be
the composition of the initial states@AfandB, e.g.A,|B, in the above example. The com-

position operator, like its agent counterpart, is both associative and commutative, but it is

not idempotent.
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2.2  Equivalence

Just as important as the definition of a state machine is the notion of equivalence between
two machines. We review by example the properties of several different equivalence rela-
tions stemming from automata theory, Milner’s work on CCS, and Hoare’s work on CSP.
This comparison provides motivation for our use of Hoare’s failures equivalence as our be-

havioral equivalence relation.

The notion of equivalence that we are interested in is one that is based upon our ability to
distinguish between machines by observing differences in the way in which they respond
to observable actions. In considering such equivalences, it must be noted that the only tran-
sition in a machine thaannotbe influenced by the observer (the observer is, itself, simply
another machine) and therefore cannot be observed, is the transition on the action 1, which

Milner has called thsilent action

There are many possible notions of equivalence between machines, all differing mainly in
their treatment of silent actions. While we shall be using only Hoare’s failures equivalence
[Hoare85] in our work, it is instructive to develop an informal understanding of this equiv-
alence with respect to three other common notions of equivalence, naacelyequiva-
lencgMiln89][McN82], strong equivalencfMiln80][Miln83][Miln89] and observational
equivalencgMiln80][Miln83][Miln89].

The notion of equivalence arising from classical automata theory is often referred to as
trace equivalenceUnder trace equivalence, two machines are equivalent every sequence
of actions that is possible for one machine is also possible for the other. Unfortunately, trace
equivalence does not distinguish between the two machines shown in Figure 3, which we
would certainly want to distinguish in a real design setting, since the non-determinism in

machineB can lead to a state in which the actiorwould not be possible, while machine
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Awill alwaysrespond with the actidm after the actiom. We would not want to inadvert-
ently substitute machir8 (which has observable non-determinism) for mackKivehich

is completely deterministic in its behavior.

a a a
y
b b
\J
Machine A Machine B

Figure 3 Trace Equivalent Machines

Milner’s strong equivalencsolves this problem by requiring that there be a very tight tran-
sition-by-transition correspondence between two machines in order to consider them
equivalent. This notion of equivalence turns out to be too strong for our purposes. Although
strong equivalence distinguishes between the machines of Figure 3 (as we wish), it also dis-
tinguishes between the machines of Figure 4, which in a typical design context we would

want to consider equivalent since their observable actions are identical.

Milner's weak orobservational equivalends a step closer to what we are looking for,
since it ignores 1 actions that do not affect branching behavior as in Figure 4. Unfortunate-
ly, it still requires a structural similarity between machines that is stronger than what we

desire. Figure 5 shows two machines that we would like to consider equivalent, but which

observational equivalence distinguishes betheliote that both machines have exactly

the same amount of non-determinism, but that the branches that decide the restrictions on
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a a
y y
1
b
y
y
b
Y
Machine A Machine B

Figure 4 Machines Distinguished by Strong Equivalence
a andb simply occur in a different order. There is no way to distinguish between these ma-

chines through experimentation, and therefore we would like to consider them equivalent.

Machine A Machine B

Figure 5 Machines Distinguished by Observational Equivalence

1. Our model was originally formulated using observational equivalence, but Theorem 4 could not
be proved in this system. It was this example that Milner used to refute Theorem 4 in the original
formulation and it was his suggestion that Hoare’s failures equivalence might be more appropriate

for our model.
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Finally, we arrive at Hoare’s notion of failures equivalence, which we shall call behavioral
equivalence. Behavioral equivalence distinguishes between the machines of Figure 3,
while considering the machines of Figure 4 equivalent and the machines of Figure 5 equiv-

alent. We will shortly provide a definition for behavioral equivalence.

There is a well defined relationship between these four equivalences. Strong equivalence
implies observational equivalence, which implies behavioral equivalence, which implies

trace equivalence.

2.2.1 Behavioral Equivalence

Behavioral equivalencgwhich is Hoare’s notion of failures equivalence) considers two

aspects of the behavior of a machine:
1 The traces of a machine (the sequences of actions that it can generate);

2 The failures of a machine, which are the actions that the mactaipgot re-

spond to after a given trace.

It is important to recognize that these conditions characterize what a ma@yde, not
necessarily what will do. The traces of a machine indicate action sequences that the ma-
chine may generate. The failures of a machine indicate the actions that may be rejected after

the machine has responded to a sequence of actions.

Formally, Hoare characterizes a machine in terms obigrvable actionsts traces(ob-
servable sequences of actions) anthitares(the actions that may not be responded to af-

ter a given sequence of observable actions).

Theinitials of a machine are the first observable actions of the machindraesof the

machine are the sequences of observable actions that occur starting from the initial state of
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the machine. A machine casfusea set of eventXif it can make a silent transition to a

state none of whose initials is a membeXof Thefailures of a machine are the paits (
X) such that the machine has a state reachable through the observable setizd e

refuseX. The following definitioné make this precise
. [al
Initials(S) = {a:0Act |[S's.t.SU S}
Traces(S) = {s |[S's.t.S 3 S}
Refusals(S) = {X| [S's.t.S H% "andXn Initials(S)=0}

Failures(S) = {(s,.X) | (S's.t.SB S andXn Initials(S)=0}
We have the following result for behavioral equivalence:

P=1P

2.2.2 Equivalence of Generic Machines and Agent Expressions

As we pointed out earlier, we must make a distinction between agents and agent expres-
sions (state machines and generic machines) when defining equivalence. We cannot direct-
ly compare the sequences of actions and failures of agent expressions since we will not
know what all of the sequences will be until values have been provided for all of the vari-

ables. Consequently, we define two agent expressions (generic machines) to be equivalent

1. Note that every state can make a silent transition to itself
2. [Broo83] p. 96
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if they have the same set of variables and, for all possible values of the variables (where the

values are themselves agents) the agents that result from the substitution are equivalent.
Consider the following three generic machines, in wii{dh a variable:

G =abo|X

G=(a.b.00a.b.0) X

G=(@.b.00a.0) X

Machines(, andG, are equivalent for all values 2f sincea.b.0 is behaviorally equiva-
lent to(a .b.0 L] a.b.0) and each value of, by definition, is equivalent to itself. Machine
G;, on the other hand, is never behaviorally equivalent to either of the other machines, since

(a .b.0 J a.0) is not behaviorally equivalent to eitleeb.0 or(a .b.0 ] a.b.0).

2.3  Additional Machine Properties and Constraints

The calculus of machines that we have developed thus far is capable of defining a very
broad class of machines. However, our model of programming languages is not based upon
the use of arbitrary machines, but rather upon machines with very specific properties. In
this section we will define those additional properties and provide some motivation for their

usefulness.

Since one of the major goals of our work is to formulate a semantic model that is modular

in the sense that each machine can be understood independently of other thaekines

1. This is not to say that the interaction between machines is not a factor in understanding the
machines, but rather to say that the definition of one machine should be independent of the defini-
tion of others.
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must ensure that our machine specifications (formulated in HCCS) are mutually indepen-
dent. We therefore impose a constraint that the constants used in the defining equations of
each state type be unique to that state type. This will ensure that each state type’s defining

equations are distinct from those of every other state type.

Up to this point, we have not ascribed any meaning to any of the actions associated with
our machines. Without ascribing meanings, these models are of little benefit, so we begin

by categorizing the actions and ascribing meaning to the categories.

2.3.1 Input and Output Actions

Back when we first defined actions, we constructed the set of primitive actions from a set
of atomic actions and a set of atomic inverse actions. We will use atomic actions to repre-
sent the basic operations that a machine is capable of performing. For example, if we had
a machine representing a variable, then the actions that set values and read values on the
variable would consist entirely of actions composed of atomic actions. We shall call these
actionsinput actions because they represent an input to the machine to ask it to do some-
thing. Note that the term input refers to the direction of the request, not the direction of in-
formation flow: the action reading the value of a variable go#se variable, even though

the net result is the transfer of a vatug ofthe variable. We note that the set of input ac-

tions is simply/\*, the set of all actions constructed from atomic actions.

The inverse of an input action is amtput action An output action is an action constructed
entirely of atomic inverse actions, and thus output actions are all members of fe set
An output action represents a requests by a machine for another machine to take some ac-
tion. For example, a machine representing an assignment operator would make a request of

one variable to read its value, and another variable to store the value.

Revised 1/28/99



Page 37

There are members of the set of actions that are neither input actions or output actions: they
contain both atomic actions and atomic inverse actions. We shall call such auteds

actions

2.3.2  Atomic Actions Appear on Exactly One Machine

Atomic actions represent a request to a machine to perform some operation. Since we wish
such requests to be unambiguous, we shall requiranh&tibmic action may appear as a
transition label on exactly one machin@lthough it may label any number of arcs on that
machine). In contrast, the inverse of that action may appear on any number of machines.
We will refer to the one machine on which an action appears aetimng machineof

that action. We define tHeef() operation that takes a machine as an argument and returns

the set of actions defined on that machine.

2.3.3 Activate and Idle Actions

One of the important issues in our model is the question of when machines are created and
destroyed. We shall deal with this issue in a formal manner by consideriafj thathines

existall the time. Instead of creating and destroying the machines, we will add an additional
state to each machine, IlSLE state, and two additional actions, twivate actiortl and

theidle actionl, to each machine. While in thBLE state a machine never responds to

any action except the activate action. An interaction with the activate action is equivalent
to creating the machine, and causes the machine to transition from the idle state to its initial
working state. An interaction with the idle action is equivalent to destroying the machine,
and causes the machine to transition back to the idle state. We note that the activate and idle

actions are both atomic actions, and are therefore unique to the machine that they appear on.
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For the purposes of defining machines, we subdivide the set of adtizininto three dis-
joint subsetsAct ,, Act ,, andAct ,, whereAct , is the set of activation actionAct

is the set of idle actions, aiCt , is the set of all other actions which we shall refer to as

working actions. We thus have,

Act =Act ,0Act, OAct ,00{1}

2.4  Orthogonality

It is often important to determine if two machines nandirectly interact with each other,
since if two machines cannot interact (directly or indirectly), then a number of equivalent

restructurings of a composition in which the machines occur may be possible.

This condition of relative independence is so important that we give it a naimegonal-
ity. If no actions appear on one machine whose inverses appear on the other (we allow both
to have the silent actid), we say that they amethogonal We use the symbaél to denote

orthogonality, and write
MOM

to indicate thatV) andM are orthogonal. Formally the orthogonality relation is given by:

MUOM < Sort(M) n Sort(M) = Sort(M) n Sort(M) = Sort(M) n Sort(M) ={1} (11)

For convenience,we shall also define orthogonality between subgroups of actions, and be-

tween the actions of a machine and an arbitrary subgroup of actions:

SOT = Atom(S n Atom(7) =Atom(S) n Atom(7) =Atom(S) n Atom(T) ={1}
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MOS = Sort(M) nAtom(S) = Sort(M) n Atom(S) = Sort(M) n Atom(S) = {1}

whereS, T Act .

We have the following result for orthogonality:

M UM, M OM impliesM O (M| M)

2.5 Types

In this section, we will explore the notion otygpe as anequivalence classf machines.

There are two different kinds of equivalence class that we shall find useful in our work. The
first of these, which we shall calkgate typeis an equivalence class in which all machines
belonging to the class ai®omorphicunder a mapping operation on actions. The second
kind of equivalence class we shall callabstract typein which the machines belonging

to the type ardehaviorally equivaleninder a mapping operation on actions when inter-
action with the machines is restricted to the actions associated with the type, but are not
necessarily isomorphic. As an example of the difference between state types and abstract

types, consider the following three machines:

A =al
A,=a0la0
A;=a.00b.0

There is no mapping between any pair of these machines that makes them isomorphic, but
machinesA; andA, are clearly behaviorally equivalent. Machidgcan be made behav-

iorally equivalent toA; andA, by restricting its actions to the set}{ Thus all three ma-
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chines could be members of an abstract type defined as a set of machines behaviorally

equivalent tod; and restricted to the actions @

Abstract types give us a way to extend the behavior of machines while still maintaining a
well-defined relationship with other classes of machines. Abstract types can be used to de-
fine hierarchies of types, in which the “parent” class defines common behavior (its abstract

type) for all of its children. Note that a machine may belong to more than one abstract type.

For example, if we define the machiAg

A,=b.0

and use it as the basis for defining a second abstract type (this time restricted to the actions
of {b}), then machinél; can be a member of both abstract types. This ability to be a mem-
ber of more than one abstract type provides a nice model for multiple inheritance in object
oriented languages. Abstract types also provide a model for the architecture/implementa-

tion concepts found in VHDL.

2.5.1 State Types

A state type is a set of state machines that are isomorphic under a mapping operation on
actions. Although the labeling of each machine in the set must be different (at a minimum,
the activate and idle actions must be different), the labeling varies from machine to machine
within the set in a very structured and regular way. For any two madiiaesiV, there

is a mapping from the actions bf to the actions ol such that if the mapping is used to
relabellM, the resulting machine is identical in all respeci¥]t@\ll machines in the set are

thus isomorphic. Figure 6 shows a set of four isomorphic machines.
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M, M, M,

Figure 6 Four Isomorphic Machines

More formally, astate typeSis defined to be a tripld,L,P), whereM = {M, M,, M,,...}

is an indexed set of state machines (we will let | MiLIM} be the set of indices of the
machines in the state typd),= [1,5,Act(M) is the set of actions associated with the state
type,and®={q@ _ :Act(M) - Act(M)| j kLII} is a set of morphisms mapping the actions of

each machine to the actions of every other machine in the type such thavfavlLIM:

M@ _ =M,

whereM[@ _ ] indicates the relabeling &f] to use the actions &f}, and= signifies iden-
tity. As a notational convenience, we shall often wiifigp,] when we meat|[@_,]. As
a further notational convenience, we shall frequently vivitéS, whereS is a state type,

when we mean thl IM g, whereM s is the set of machines associated with that state type.

While this may be a satisfactory definition of a state type from a mathematical perspective,
we have not yet provided a constructive meanspetifyingthe machines that belong to

the state type. We thus give an alternate and equivalent definition of state type as a pair

(M,,®) whereM, is a fully specified “prototype” state machine @ Act(M) — Act(M)}
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is a set of functions mapping the actiond/pto the actions dil, My, M.,..., which are the

other machines of the type such that forlM|] LS:

MI®_d =M,

whereMJ[@, ] is a relabeling oM}, to use the actions &ff and= signifies identity.

2.5.2 Abstract Types

In the previous section, we defined a state type to be a set of machines that were isomorphic
under a relabeling operation. We now define a less restrictive notion of type that we shall
call anabstract typelnstead of requiring that the machinessmmorphicunder the rela-

beling operation, we merely require that the machines of an abstract tippbdogorally
equivalentunder the relabeling operation when interaction with the machines is restricted

to the actions associated with the type.

Formally, an abstract typ& is defined to be a tripld,L,®), whereM = {M, M, M,,...}

is an indexed set of state machines (we will let | FNI1;LIM} be the set of indices of the
machines in the state typd),is the set of actions associated with the abstract type,and
P={@_:(Act(M) n L) — (Act(M) n L)| j,kO1} is a set of functions mapping those ac-

tions of each machine that belong to the abstract type to those actions of the other machines

that also belong to the type such that fo/IM | US:

M@ dIL =ML

where= signifies behavioral equivalence.
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Lemma 1 Every State Type is also an Abstract Type

We now show that every state type is also an abstract typeMyittMg, L, = Lg and

q)A:q)S'

Proof: LetS=(M,L,®) be a state type, arld andM, OS. ThenM[@ _ J[L=EM=M/[L

(where = signifies identity), and since identity implies failures equivalence, then
M@ _. L=M/J L under behavioral equivalence, henbkl(,®) is also an abstract type.
Based upon this definition, it should be obvious that more than one state type can belong to

the same abstract type. For example, macBiire Figure 7 is behaviorally equivalent to

machineB in Figure 2, and therefore both could be members of the same abstract type.

Machine D

Figure 7 Behaviorally Equivalent Machine for MachineB

2.5.3 Extensionality and Types

It is reasonable to ask how the membership of machines in state types and abstract types is
determined. One strategy is to explicitly specify the membership of each machine in the
type. With this approach, the meegistenceof a mapping between two machines that

would make them equivalent (either isomorphic or behaviorally equivalent) under a rela-
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beling operation doasot mean that the machines are of the same (state or abstract) type.
We believe that this approach is consistent with the use of types in production programming

languages.

Another strategy is to consider machines to be of the same type if a mapping exists that
makes them equivalent. This is analogous to the principle of extensionality discussed fre-
guently in the denotational semantics literature. We believe that this approach is inconsis-
tent with the use of types in production programming languages. Furthermore, we conjec-
ture that this notion is incompatible with the notion of function overloading in the sense that

it will make overload resolution undecidable in many cases.

2.6 Petri Net Extensions

For ease in illustrating the interactions between machines, we shall develop a graphical no-
tation based on petri nets that we shall eadluced Petri netfReduced Petri nets are col-

ored Petri nets with two extensions added. The first of these is due to Eaker
[Eaker9la][Eaker91b]. In Eaker’s notational extensions (see Figure 8), the identity of each
token is preserved as it passes through a transition. This is indicated by an arc passing
throughthe transition (Figure 8a). Similarly, the notation indicates the destruction of to-
kens (Figure 8b) and the creation of tokens (Figure 8c). We further extend Eaker’s notation
by labeling each intersection of an arc and a transition with an action. Note that since the
only possible interaction between machines is between a machine with an arc labeled with
an actiora and another machine labeled with its invexseach transition in our diagrams

will be labeled with both an action and its inverse.

Figure 9 uses our reduced Petri net notation to illustrate the interaction of machines A and

B from Figure 2. In this illustration there is a separate transition in the diagram for each
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O

a) Token preserved b) Token destroyed c) Token created
through transition at transition at transition

Figure 8 Eaker’s Extensions to Petri Nets

possible interaction between the machiAesndB. The presence of a separate transition
for each interaction leads to a combinatorial explosion that significantly limits the useful-
ness of the extended Petri net diagram as a documentation technique. This naturally leads

us to consider possible ways of simplifying the diagram.

2.6.1 Reduced Petri Nets

The simplification we shall consider here involves reducing a collection of nodes in the Pet-

ri net to a single node containing a typed token. We can take the set of nodes that a token
can pass through in a Petri net along with the set of labeled arcs connecting the nodes to be
the definition of a machin®l We can then collapse these nodes into a single node on the
Petri net containing the machih Similarly, we can collapse all of the transitions into a
single transition that is now labeled with the actions of the madkdt(&/). To be equiva-

lent to the original Petri net, the new node must contain a single instance of michine

Now the collapsing of the transitions will require a similar collapsing of the nodes on the
other side into its machine definition. We call a network that has been reduced in this man-
ner areduced Petri netWhile reductions of this type are not always possible in arbitrary

Petri nets, we shall see that the nets arising from our semantic model will frequently be re-
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B,
a
a

Bs
b
b
\@ )

Machine A Machine B

Figure 9 Extended Petri Net Showing the CompositioA|B
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ducible. In fact, we shall see that this kind of reducibility is highly desirable: the ability to
reduce in this manner is the ability to present a description of a piece of software at a higher

level of abstraction.

For example, the compositidNB of Figure 9 can be represented by the reduced Petri Net

of Figure 10, withL, ={a, b}, and Lz = £, ={a, b}.

\/’/A

Figure 10 Reduced Petri Net Showing the Compositiof|B

Revised 1/28/99



3.0 Classes of Machines

In the previous chapter we hinted that the building blocks for our programming language
semantics would not be based upon arbitrary machines, but rather a smaller class of ma-
chines having specific properties. Two of these properties that are shared by all of the ma-
chines that we will use have already been discussed: all machines may operate asynchro-
nously with respect to each other; and atomic actions (as opposed to their inverses) appear

on exactly one machine.

In defining our semantics we will require two categories of machiwradge machines
which are used to model the storage of values;jraedaction machineswhich are used

to model interactions between other machines.

3.1 Value Machines

One of the fundamental needs of a programming language is to have a means of represent-
ing values. In our model of programming languages, each variable is modeled as an in-
stance of a special kind of state machine that we shall galua machineThe states of

this machine represent the values that the variable can assume. A data type in a program-
ming language then corresponds to a state type that defineslidetionof machines ca-

pable of representing those values. In a simplistic model of programming languages, de-
claring a variable to be of a particular type can be interpreted as designating the particular
machine from the state type that will represent this particular variable. As we shall see in
the next chapter, a more complex interpretation will be required when type structure is in-

troduced.

To clarify the intended effect of actions on variable machines, we subdivide the working

actions of value machines into two subsets: one set of actiorsgthalues, and one set of
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actions toread the values. We shall call the actions that set valuesgh# actions and

designate these actions with the notation

wherei indicates that this is an input action (one that sets a value),iaditates that this

is thenth input action associated with this machine (i.e. is associated witkhthalue).

The output actionf the machine represent actions teatd the value of the variable. In

a manner similar to the input actions, we designate the output actions with the notation
on

As an example, consider the machine defined by the following equations and shown in Fig-

ure 11:
Vi=olV,0i1 .V, 0i2 V21i3 .V,
V,=02.V, i1 .V, 0i2 .V, i3 .V,
V;=03.V; 001 .V, 0i2 .V, i3 .V;

This machine is suitable for representing a variable that can assume one of three possible
values. Each of the agents, V, andV; represents a value. From any given state the ma-
chine can be made to assume any other state (may represent any value) given the proper
input action (value to assume). Note that in any particular state, the only output action that
may occur (value that may be read) is the output action corresponding to the current state:

i.e. the value read is the value that the machine is currently representing.
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Figure 11 Incomplete Value Machine for 3-valued Variable

3.1.1 Value Machines are Mutually Orthogonal

Intuitively, we would expect that, in the absence of any other machines, operations per-
formed on one value machine would not affect the state of any other value machine. We
note that value machines, as we have defined them, are labeled entirely with primitive ac-
tions and do not have any inverse actions. We further note that we have required that all

primitive actions except fak appear on exactly one machine. Thus we have:

Lemma 2 All value machines are mutually orthogonal.

3.1.2 Value Machine Activation and Idling

In our initial description of the value machine, we neglected the activate and idle actions,
and the idle state. The complete value machine, with initial ¥taie given by the follow-

ing equations, and is illustrated in Figure 12.
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Vo=aV, oV, Oa.V,;
V,=o01.V,0i1 .V, 0Oi2 V21i3 .V, ULV,
V,=02V,0i1 .V, 0i2 V, i3 V; ULV,

V,=03V, 0i1 .V, Oi2 V,0i3 Vs 01V,

03 i3<; - I3 2 i2 o2

Figure 12 Complete Value Machine for 3-valued Variable

Note that when the activate actidroccurs, the initial state of the variable is non-determin-
istic. One could easily define an alternate semantics for variables in which the machine de-
terministically transitioned to a specified state upon activation. Also note that the idle ac-

tion | places the machine back in its original state, and that there is no carryover of state
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information once the idle action has occurred. Thus the activate action is equivalent to the

creation of a new machine, and the idle action is equivalent to destroying a machine.

While the structure of these machines is simple, it is clear that using diagrams such as Fig-
ure 12 for each variable will lead to complexities in diagrams that show interactions be-
tween machines similar to those that are illustrated in Figure 9. Consequently, we shall use
our reduced Petri net notation, collapsing all of the value states into a single node in the
Petri net, and labeling this node with tilestracttype of the variable. From this node we
shall generally show two types of transitions, one labeled witin treetions, and the other
labeled with theout actions, giving us the reduced Petri net of Figure 13.For clarity in
these diagrams we will show the state prior to activation and the state after idling as sepa-
rate states. This is without loss of generality, since there is no state information carried
through from idling to activation. In addition to the simplification shown here, we will fre-

qguently use the Eaker notation to show the creation and destruction of tokens.

P/

Figure 13 Reduced Petri Net Fragment Showing a Variable of Typé

Revised 1/28/99



Page 53

3.1.3 Constants

A constant is simply a special case of a value machine with a single activate transition and

all of the input omitted. An example of a constant for the first value of our three-valued data

type is shown in Figure 14. Figure 15 shows a typed Petri net for a constant\df type

ol

<y

Figure 14 Value Machine for Constant “1”

©

\\ . \

S ul
5o

Figure 15 Reduced Petri Net Fragment Showing a Constant of Typé

The formal specification of this constant is given by:
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G=a.CG

C, =01.C,01.G,
C, =02C,01.G
C, =03C01.G

Note that the definitions dE, andC; are superfluous, since neither one is reachable from
the initial state. We show them primarily to clarify the relationship between value machines

and constant machines.

3.2 Interaction Machines

Value machines are machines that store values. Since they cannot interact with each other
(we have already shown them to be mutually orthogonal) we must introduce another class
of machine which we shall calteraction machinesexpressly for this purpose. In order

to fulfill their role, interaction machines must be labeled with the inverse actions. The only
newactions (non-inverse actions) that are introduced on an interaction machine are their
activate and idle actions. Thus the only orthogonality that is guaranteed between interaction
machines, and between interaction machines and value machines is that the activate and
idle actions are different on each machine, this stemming from our requirement that atomic

actions only appear on only one machine.

As we shall see, a significant property of interaction machines is thatelkieyencode val-
ues in their internal state: the machines simply serve as catalysts for the transfer of values

from one value machine to another.

We shall adopt a naming convention for interaction machines that is intended to make our

machine algebra expressions more readable. In general, we will use the notation
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-k
Fy

to designate an interaction machine, wHeriadicates kind of interaction machine this is
(for example, we will use to designate an assignment machine), the subscript x uniquely

designates this machine (we may well have several assignment machines arodﬁa), and

is an optionalnformal indication of which machines this one interacts with.

We will use interaction machines to model many operations on basic data types. For exam-
ple, the assignment statement of a basic data type is modeled as an interaction machine that
reads a value from a value machine and sets the value of a (usually different) value ma-
chine. A state diagram for a typical assignment magHinéfor reading three-valued vari-

ableM and setting three-valued variaiif is shown in Figure 16. The subscripts indicate

the defining machines for each action.:

Figure 16 Assignment Machine=' "

This machine is defined by the following expression:

== B =a.(4i 1,.1.Ey + 02i 2.1.Ey + 03i-3..1.Ey)
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where the activate and idle actions are unique to this machine. As before, we will more of-

ten use a typed Petri net representation for the assignment machine, such as that shown in

o
\\ IAg) >
5

Figure 17 Typed Petri Net Showing an Assignment Machine "

Figure 17.

Other operations on basic data types may also be modeled as interaction machines. For ex-
ample, relations may be modeled as interaction machines that read values from two value
machines and set the value of a boolean value machine to indicate whether the first two val-
ues belong to the relation. Note that this is an operational definition of a relation: while it
does implicitly define the relation itself, it actually tests membership in the relation. Arith-
metic and boolean operations are other examples of operations that may be modeled as in-

teraction machines.

3.2.1 Interaction Machines Model Primitive Operations

It is important to note that interaction machines are not the only means of modeling these
operations, but the alternative means of implementing these operations are behaviorally

distinct from (not behaviorally equivalent to) interaction machine models. For example, the
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assignment operation could be alternately modeled by copying the value from one machine
into a second machine (using an interaction machine), and from there copying the value
into the real destination machine (using another interaction machine). If the variables in-
volved kept track of the number of accesses that had occurred, then an observer would be
able to distinguish the two assignment operations because the second option could reach a
state in which the access counts on the variables are different, while the interaction machine
model could never reach such a state. Deciding which operations are primitive in this sense

is an important issue in modeling languages that will generate code for parallel machines.

3.3 Activation Machines

Thus far we have defined machines that store values and machines that facilitate the ex-
change of values between value machines. We now address the issue of coordinating the
activation and idling of these machines. To accomplish this, we define a special kind of in-
teraction machine that is labeled exclusively with the inverses of the activate and idle ac-
tions of other machines and possibly an activation and/or idle action of its own. We shall
call these machinexctivation machinesWe shall place some further restrictions upon the
appearance of activation and idle actions: the inverses of activate and idle actions may only
appear on activation machines, and then on no more than one machine. As we shall see

shortly, the syntax will make clear exactly which machine these action inverses appear on.

As an example, let us suppose that we have two machihasdlM, and we wish to have

M go idle while activatindv]. To accomplish this, we compose these two machines with an

activation machiné\ ™’ that responds to both the idle actiolMfand the activate action

of M. This machine is defined by the following equation:
A=A =10 A,
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This kind of recursive expression arises frequently, and we will often want to give the ma-
chine as a term in a state algebra expression without having to define a constanfguch as

in the above expression. Accordingly, we will use the notation:

(ha.)*

where(fiaj .)* is a shorthand notation f&ﬁj.liaj.liaj ..... This machine is shown in Figure

18.:

Figure 18 Activation Machine Ai-i

While we could use our original notation and write the composition as:

(MIA™ | M\1,05)

this situation arises so frequently that we will use a shorthand notation as follows:

M; M=(M | A~ | M)\1,a;)

Here the semicolon indicates that the machines before and after are composed with an ac-
tivation machine that relates the idling of the machine before the semicolon to the activation
of the machine after the semicolon. The semicolon is associative (Appendix B Theorem

26).
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Just as we have removed the explicit representation of the activation machine from our
equational syntax, we also remove it from our reduced Petri net notation. Figure 19 shows

a partial reduced Petri net for both the unsimplified and simplified versions.

M

a) without simplification a) with simplification

Figure 19 Reduced Petri Net Fragment for Compositio | A~ | M

Another common activation construct is the simultaneous activation or termination of mul-
tiple machines. We might wish, for example, to activate machasdlV| in parallel, ac-
tivating them as machirlé, terminates, and not starting machiMeuntil both have termi-
nated. This would require two activation machif¥s,* relating the idling of machinkl,

to the activation of machindg andM,, andA-Prelating the idling of machinell; and

IV} to the activation of machird. MachineA2-k is defined by the equation:
AK = (o)

and is shown in Figure 20.
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Figure 20 Activation Machine Ai-k

Again, while we could use our original notation and give the full composition of machines

as:

(M| A= M MY 100,003 | AR=P | MOV, O}

this situation arises frequently enough to warrant its own notation. We first introduce a no-

tation to indicate that two or more machines should be activated and idled in parallel:
I | M. ML O (0,010,000 )% [V VB | V] (L 0 )N O, Ol Ol A o}

Note that this notation introduces new activate and idle act@onar(dl,) for the compo-

sition. We may then use the semicolon notation as before:

M, M MLM

Figure 21 shows the partial typed Petri net for this composition. The composition is equiv-

alent to:

M | 1000)* | (0000 )* [ MV (Lt )* | (0. )* | M
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where we have omitted the restrictions for clarity. Theorem 25 (Appendix B) can be used
to show that ((0l,.)* | (0,00)*)\{ 0} = (1,0,0,.)%, which means that the syntax [

gives us the desired relationship between the idlifd,@ind the activation d¥] andM.

Figure 21 Partial Typed Petri Net of CompositionV; M | MO M

3.4 Machine Algebra

We define avell-behaved machiné be any machine that has exactly one observable ac-
tivate action and whose initial action is always that unique activate action, and has exactly

one observable idle action and if this idle action occurs, the only observable action that may

follow is the activate actidn

We note that “;” and [l both preserve the well-behaved property:

1. Note that this does not imply that the machine must respond to the idle action in every state. This
is similar to Milner’s well-terminating property [Miln89] p. 173
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Lemma 3

Let M be the set of well-behaved machines. Then:
M, M OM O M;MOM

M, M,.. MOM O 4| M)|...MIIM

We adopt the convention that the “;” operator binds more tightly than (takes precedence

over) the| operator, and thaflbinds more tightly than either.

Ourmachine algebrds then the systenM, =, ;, |,LI), whereM is the set of well-behaved

machines, = is behavioral equivalence, and ;, |[Ahce as defined above.

3.5 A simple example

Let us now construct a simple model of a single instance of the following program frag-

ment:

declare
a:integer := 2;
b : integer := 3;
C : integer;
begin
c:=a+hb;

end;

Example 1 Simple Program Fragment
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If all of the declarations were to occur in parallel (which is not true in Ada) the program
fragment could translate into the following semantic expression, which is illustrated in Fig-

ure 22:
Vo Vo IV | G| G [FE-2 =30 IV, b t=he D (12)

Note that the three value machines and the two constant machines are started in parallel,
along with the machine=§-2 ;=3-b ;[V, [+20-t=4-¢[). This serial combination first ini-
tializesV,, then initializesV, and then starts the machine parallel combination of a tempo-
rary value machin¥®, and the series combination of the addition operation followed by the

assignment t&/,.

It is reasonable to ask why the temporary varidhlis constrained to have the lifetime of
the two statements that interact with it. Why not use the following expression, in which the

temporary variable has the lifetime of the program:
Vo Vo [V GG [ Vi [FE-25=3-0 s +20-t=e O (13)

The answer is that these two expressions are indeed equivalent, subject to a restriction on
the accessibility o¥/;. We will now proceed to state a necessary theorem and then give the

derivation of (13) from (12).

3.5.1 Parallelization Theorem

We wish to consider the circumstances under which the sequencing of machines in a com-
position may be altered. Consider the following abstracted model of a program or subpro-

gram:
V., [ Vo | M Mys M MOS
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Figure 22 Reduced Petri Net of Example 1
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whereS = Sort(M) O Sort(M) O Sort(M) 0 Sort(M) O Sort(M) O Sort(M) O Sort(M)
DW(M), V,andV, are local variables of the prograM, copies actual parameter values

into the local variabledy}, andV] are machines that do the actual work of the subprogram
by modifying the local variables, ald copies the final values out into their target desti-
nations. The restrictiohS simply says that the internal workings of the program are not
visible from outside the program (the variables are hidden and the machines that do the
work cannot communicate with any machines outside of the program). The seqiMdcing

M, ; M ; M says that the actual parameter values are copied inVtfdoes its work, then

M does its work, and finalliv/} copies the results back out of the program.

Now it seems intuitive that if the variables cannot interact with each other, and the ma-

chines that do the worlM, andM) cannot interact with each other, and each working ma-
chine can only interact with one of the variables, then it should not matter which\jrder

andM do their work. In fact, they could even operate in parallel! This is exactly what the

parallelization theorem establishes:

Theorem 4 Parallelization Theorem

M OM, MOM, M OM, M, OMO
M MMM M MOS=

DA M M ;4 | MO MAS =

B IMIM; M; M MOS

This is a valuable result, since it shows how to take a serial program and convert it into an

equivalent parallel program with no analysis beyond simply determining the orthogonality
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(independence) of the component parts of the program. The proof of this theorem is in Ap-

pendix B section B.1 on page 160.

3.5.2 Change of Scope Theorem

Somewhat similar to the parallelization problem is the related change of scope theorem.

Consider the following configuration of machines:

(MM, | ViEIMOS

whereS = Sort(V,). The situation we are modeling here is one in wNi¢cks a local vari-
able used bW}, only. If M,andM cannot interact witN, andV, is hidden from the outside,

then it seems reasonable that the lifetim¥,p€ould be extended, yielding a behaviorally

equivalent configuration:
V. IMM; MOS
This leads to the following theorem:

Theorem5  Change of Scope Theorem

M OM, M OMO
(M, ;04 | MO MOS=M | M, ;M; MOS

whereS = Sort(Vk). The proof of this theorem is in Appendix B section B.2 on page 168.

We now return to our example of (12). We now wish to show that the scope of the local
variableV, can be changed without affecting the observable behavior of the expression.

This example actually contains an omission: the temporary vaNals@ot visible outside
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of the assignment statement. Accordingly, we add the restriction hiding the existence of the

temporary variabl&/:
Vo Vo IV | G| G [Fi-25=3-0 5 IV, [+a0- =Y DSort (VYU

Next, we must show that some of the machines are orthogonal. By definition, all of the vari-
ables and constants are orthogonal. We also notethat has only the actions &, and

V,, and=3-" has only the actions €; andV,. We thus have:
V, [=%3-2 andV, [J=3-b

These orthogonality observations, in conjunction with Appendix A (65) and the definition

of ; allow us to change the scope of restriction:
WV, [ Vo | V.| G| G (=32 ;=30 ; [V, [+20-t=4-c DASort(V) [

Now we apply Theorem 5, lettifld, = =%-2 ;=3-b | M = +ab-t;=t-¢ M=V, andM=0 to

get:
Vo Vo [ Ve | G| G (Vi ] = 3-2;=3-P ;+20-t=4-c \Sort(Vy) O

Again applying our orthogonality observations and Appendix A (65) we get our desired re-

sult:

Vo Vo IV G| G V| = 3-2=3-0 +20-t=4-c [Sort(Vy)
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4.0  Visibility

Determining the visibility of variables, functions and types at various points in a program
can be a difficult and complicated task, especially in languages as complex as Ada. While
intuition will successfully guide a programmer in a simple block structured language, con-
cepts such as separate specifications and implementation in Ada and Modulais2, and
clauses in Ada make it increasingly difficult for the programmer to build and apply a con-

ceptually simple model of visibility.

In this chapter we examine the process of determining visibility, and propose the use of a
modified set union known as a masking union as a means of formalizing visibility rules. In
contrast with the traditional ad-hoc rule based approach to defining visibility, this approach
has the advantage of being both conceptually simple and mathematically rigorous. We be-
gin by using masking unions to model visibility in simple block structures, and then pro-
ceed to analyze increasingly complex visibility computations, including considerations of
declaration ordering and inter-dependency. We observe that the resulting models have the
additional advantage of providing diagnostic information that can be used to explain, in a
meaningful way, why certain program elements are not visible at specific places in the pro-
gram. In [Brow90] we have considered the more complex visibility problems associated
with the separation of specifications and implementations in Ada, and provide an analysis

of library-level visibility rules in.

While all examples are drawn from the Ada programming language, no knowledge of the
Ada language is assumed. Initial examples simply use blocks with declarations, which
should be readily understandable to readers not familiar with Ada. As other Ada features

are introduced, they are defined and explained.
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4.1 Declarations and References

In the previous chapters we have laid the groundwork for modeling the semantics of a pro-
gramming language in terms of machines. The meaning of an identifier in a program is a
machine. We define aamvironmentE:1dexM to be a relation between identifiers and ma-

chines. We note that this environment is suitable for mapping identifiers into both machine

instances and types if we use the “defining machine” approach to machine types.

A declarationis an entry in an environment relation, mapping an identifier to a machine

A referenceis the use of an identifier to locate the appropriate declaration in an environ-

ment relation and thus locate the machine that is being refefee@eth occurrence of an

identifier in a program is either part of a new declaration or it is part of a refergboe-

sider the program in Example 2. In this example, we observe a single explicit dectaration
of a variable named, and a number of references: onateger in the declaration itself;
another ta in the assignment statement; and a third to the litdrathe assignment state-
ment. As we shall see later when we complete our semaatiesll itself be viewed as a

reference to an assignment operator.

X: declare
a : integer; -- a declaration of “a”
begin
a := 1; -- areference to the “a”

end X;

Example 2 Declarations and References

1. Note that this allows more than one identifier to be associated with the same machine.

2. As we shall soon see, there may be more than one entry in the relation with the same identifier
3. Explicit in the sense that there is an explicit declaration in the code. We shall see later that some
machines are implicitly declared
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Taking this perspective of a program, an interesting problem is the determination of which
declaration a particular reference actually refers to. This problem can, in itself, be divided
into two sub-problems: one is the determination of which declarationssdyie at a given

point in the program (we call this set of visible declarationglifext environmeny; the

other is, of the declarations visible at this point, which is the one that is actually being re-
ferred to. In this thesis we will confine our investigation to the computation of visibility,

and leave the formalization of how a reference is selected for future work.

4.2 Homographs and Overload Resolution

Most programming languages place some restrictions on the declarations that are allowed
to co-exist in the same direct environment. Most languages do not allow the program of Ex-
ample 3, in which two variables of the same naambut of different types, appear in block

X. Similarly, the dual declarationsiofire not allowed. Note that despite the syntactic iden-

tity of the two declarations af, they are two distinct declarations that happen to associate
two different machines of the same type with the same identifier. Maintaining these sepa-

rate declarations is an essential part of the visibility model that we will be developing.

X: declare

a : integer;

jo})

: boolean;
b : boolean;
b : boolean;
begin
b :=true; -- an ambiguous reference to “b”

end X;

Example 3 Ambiguous References
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On the other hand, most languages support the notion of names being re-used in nested

blocks, as in Example 4.

X: declare
a : integer;
begin
Y: declare
a : boolean;
begin
a := 1; -- which declaration does this refer to?
end;

end;

Example 4 Re-use of Names

Under certain circumstances, languages may allow the re-use of a name within the same
direct environment, as in Example 5. In this example, two functions are declared, both with
the name . When a situation like this occurs, we say that the nameedoaded or has

more than one declaration associated with it. When a referen@etars, the correct ma-

chine must be selected from among the declarations associating machiriesishpro-

cess of selecting the actually referenced machine is knooxredsad resolutionWe shall

leave the formalization of overload resolution in our model an open problem in this thesis.

X: declare
a : integer;
function f return integer is
begin
return 1;
end f;

function f return boolean is
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begin
return true;
end f;
begin
a :=f; -- overload resolution needed to select “f”’

end;

Example 5 Overload Resolution

How do we characterize declarations so that we know when overloading is allowed and
when it is not? The answer is based upon the manner in which the declarations can be dis-

tinguished from each other. If two declarationsadd d, are never distinguishable, based

upon some set of information about the declarations, we calliberographs and define

a corresponding relatidd(d;, d,). We note that the homograph relation may be an arbi-

trary relation, but we also note that an understanding of the structure of this relation is an
essential part of understanding visibility. Thus it is in the interest of both the language de-
signer and the practicing programmer to keep the rules for defining this relation as simple

as possible.

While the exact definition of homograph will vary from language to language, we assume
that such a definition can be given for each languaganguages that do not allow over-
loading, two declarations are homographs if they share the same nanelanguages

that do allow overloading, generally overloading is only allowed for machines that play cer-
tain roles in the language. In Ada, for example, overloading is allowed for machines used
as subprograms, but not for machines used as variables. The implication is that declarations
in such languages must be extended to contain information about the role that the machine

is playing. In such languages we would need to useexended environment
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E:ldexMxRole whereRole indicates the role that the machine plays in the language (vari-

able, function, type, etc.).

Languages frequently differ in the distinguishability criteria that they use, and hence differ
in their definitions of homograph. Some languages, like Ada, even use different criteria in
different situations within the same program! For example, Ada does not allow subpro-
grams that have the same parameter and return type profilelézlbaeedin the same con-

text, but it does allow two such declarations tdobmught into the same environmesia

use clauses. Furthermore, the overload resolution process, whiebtsthe appropriate
declaration, is allowed to also use any formal parameter names that happen to be used in

the subprogram call to differentiate and select a single declaration.

As a result, in order to fully model Ada visibility, we shall need three homograph defini-
tions: the main one, which will be used in most visibility computations, considers subpro-
grams to be homographs if their names and parameter and result type profiles match (their
associated machines have the same state type); the second, which we shall use for defining
use clause semantics, considers all subprograms to be differentiable, even if they have the
same name and type profiles; and the third, which is only required to describe the overload
resolution process, considers subprograms to be homographs if their names, parameter and

result type profileand formal parameter namesatch.

We thus have the following basic definition of &ada Homograph[LRM 8.3(15)] for use

in visibility computations (here we formalize distinguishability of declaratt@tdaredin

the same environment - the second variant of the homograph declaration will be provided
in a later chapter for th&e clause case). Two declarations Ada Homographsof each

other if they have the same identifier and either:
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1 Overloading is not allowed for at least one of the pair (based on roles); or

2 Overloading is allowed for both, but they are indistinguishable on the basis of

parameter and return types.

We note that the homograph definition for overload resolution (which we have not formally
given) will require the names of the parameters, and that this information is not present
even in our extended environment relation. We thus defineAdan environment
E:ldexMxRolexParameterNameList where ParameterNameList is simply an ordered

list of formal parameter names.

We shall, in the remainder of this thesis, use this Ada definition of homograph in our ex-
amples. Since we are not going to go into the details of overload resolution, we shall omit
the ParameterNameL.ist from our formal descriptions of environments. Languages with
other characteristics can be modeled by suitably changing the definition of homograph and

environment.

We note that the relation defined by the Ada definition of homograph is reflexive and sym-

metric, but isnot transitive. Consider the following Ada declarations:

a : integer;
procedure a (b:integer);

procedure a (b:boolean);

The first declaration is a homograph of both the second and the third, but the two procedure
declarations are not homographs of each other. If we were to relax the restriction that over-
loading is only allowed for some types of declarations, and allow all declarations to be

overloadable, then we would get a homograph definition that leads to an equivalence rela-
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tion, i.e. a relation that is reflexive, transitive, and symmetric, and a corresponding simpli-

fication in understanding visibility.

4.3 Environments and the Masking Union

We now return to our primary purpose, which is to describe the visibility of declarations
(associations of names with machines) at various points in the program. In a typical pro-
gramming language we will find basic groupings of declarations and executable code,
which we shall call aeclarative blockEach declarative block is actually the definition

of a machine in our mode(usually the prototype machine of a state type). This machine

is actually just a composition of the machines defined by its declarations and executable
statements. The defined machine is then associated with its name and placed in an environ-
ment for later reference. The machines defined by the declarations will themselves be
placed in environments, either for reference within this machine or, in some cases, for ref-

erence by other machines.

There are at least two environments that are of major interest with respect to a declarative
block: the set of declarations that are visible in the executable body of the block, known as
the direct environment(DE); and the set of declarations that occurred within the block,

known as théocal declarations(LD).

There are, as we shall soon see, a number of environments in addition to these two associ-
ated with each declarative block. We formalize the relationship between declarative blocks
ad environments by definingszopeS:MXEXRole to be a relation associating machines

M with environment&  and the roles that the environments play with respect to those ma-
chines. We shall soon see that defining visibility is basically the process of defining these

environments and their relationships with machines. We shall use the nbi&Riom des-
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ignate the environments playing rdtewith respect to machin®l ThusX:DE would be

the direct environment associated with machfne

Consider the nested blocks of Example 6, and the task of determiningYisodikect en-
vironment. If we consider blocK's local declaration¥:LD, and blockX's direct environ-
mentX:DE, one might be tempted to conclude that bl¥tkdirect environmenY:DE is

simply the union of blocks local declarations and blo@Ks direct environment:
Y:DE = Y:LD O X:DE (14)

X: declare
a : integer;
b : boolean;
C : integer;
begin
Y: declare
d : boolean;
e : integer;
f: boolean;

begin

Example 6 Basic Nested Blocks

While the union provides a useful approximation to what is actually visible in Mpitk
does not provide the correct result for Example 4, in which only the declaratotihat

occurred in block is visible to the assignment statement: the declarati@thait occurred
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in block X is hidden. With a simple set union, both would be visible. We thus need to mod-

ify our notion of set union in order to adequately model visibility computations.

We now proceed to define a variation of a set union knowmaas&ing union so called

because declarations that occur in one of its source sets will “mask” the presence of decla-
rations occurring in the other source set. We shall use the sjgnholdesignate this op-

erator.

Given two sets, A and B, the masking union of these sets

c=All B

is defined by:

C = {aJA} O {b 0 B|JaJA =H(a, b)} (15)

whereH is the homograph relation defined in section 4.2 on page 70.

Appendix 1 describes some of the properties of this operator and some basic theorems.

4.4  Basic Visibility Computations

Utilizing masking unions, we can now complete the model of visibility computations in our

simple block structure. For each declarative block, we have
X:DE =X.LD &l X1:DE (16)

whereX1 denotes the “parent” o, i.e. the declarative block in which the declaration of

X occurred.

For example, consider the program fragment of Example 7:
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X: declare
a : integer;
d : integer;
begin
Y: declare
a : integer;
b : integer;
begin
Z: declare
b : integer;
C : integer;
begin
end Z;
end Y,
end X;

Example 7 Nested Blocks

We first note that the keywortkclare marks the beginning of each new declarative re-
gion, and the region ends with the keywerd. The keyworcegin simply serves to sep-

arate the declarations from the executable portion of the block. It is easy to see that the di-
rect environments of the blocks are as follows (omitting the roles and parameter names

from the relations, and ignoring pre-defined declarations other than integer):
X-1:DE = {(x,X), (integer ,Int )}
X:DE = {(a,aldX), (@,dIX), (x,X), (v,Y), (integer ,Int )}

Y:DE = {(a,allY), (b,b0Y), (d,dIX), XX, (¥,Y), z,2), (integer ,Int )}
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Z:DE ={(a,a0)Y), b,b02), (c,c02), @,d0X), xX), .Y), @2),

(integer ,INt )}

where we use the notati@lIX to disambiguat@, indicating that we want the that is a
part of X. The notion of “being a part of" will become clear in the next chapter. For now,

it is sufficient to think of it as meaning “was declaredifi X-1:DE represents the direct

environment of the block in which X was declared.

4.4.1 Compilation Diagnostic Aids

It is not unusual for a programming language to have a restriction that two declarations oc-
curring in the same declarative region are not allowed to be homographs of each other. Our
model is flexible enough to allow homographs to be declared in the same declarative region
(recall that these declarations always maintain their separate identities). In addition, our
model provides a convenient means of checking to see if the rule regarding homographs

has been violated for a declarationld.D:
(d OLD,dzd, ~H(d, d)

If this term is false, then there is a violation of the restriction. If we assume a constant com-

parison time, then the worst case complexity of this operation &, @(nere n is the num-

ber of declarations. However, if we consider that, for most definitions of homograph, name
equivalence is a major part of the homograph predicate (declarations with different names
will never be homographs of each other), the average complexity of the check can be re-
duced by indexin§gD by the names of the declarations, and only applying the homograph

check to those declarations with the same name. This yields an average complexity of

O%ulog %%E+ (nx m)% , where m is the average number of declarations with the same
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name, and n is the total number of declarations in the set. If hashing is used, the first term
reduces to a constant, and the resulting complexi®(is*x m) Not only does this give a
boolean result, but it points out specifically which declarations are homographs of the cur-

rent declaration, thus providing the basis for meaningful compilation diagnostic messages.

4.5  Visibility and the Ordering of Declarations

The ordering of the declarations within a declarative region can have an effect upon the
meaning of references within a declarative region. In the following we examine three pos-
sible semantics for visibility within the declarative regions: letrec (let recursive), let and

let*.

45.1 Letrec (Let Recursive) Visibility Semantics

Letrec, or let recursive, semantics indicates that any declaration in a context may refer to
any other declaration in the region, including itself — hence the reference to recursion. This
was the semantics given in Section 4.4, where we noted that the ordering of declarations
within a block was irrelevant. With this semantics, the programs of Example 8 and Example

9 have identical semantics, with:DE = {(a,al]Y), (b,00Y), x,X), (¥,Y), (inte-

ger ,Int )} in both cases, and all references within the bl¥ckeek to locate their decla-
rations in this environment. This is the semantics of the scleeare construct [Rees86].

All of the declarations in a given block are added to the environment before any of the ref-
erences are evaluated, and any declaration is allowed to reference any other declaration, in-

cluding itself. Thus, in both examples, the variabig initialized to the value of 4.

X: declare
a : integer := 3;

begin
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Y: declare
b : integer := a; -- which “a” does this refer to?
a:integer := 4,
begin
a:.=1;
end Y;

end X;
Example 8 Relative Ordering of Declarations

X: declare

a : integer := 3;

begin
Y: declare
a:integer := 4,
b : integer := a; -- which “a” does this refer to?
begin
a:.=1;
end Y;
end X;

Example 9 Relative Ordering of Declarations

45.2 Let Visibility Semantics

A second alternative for visibility semantics is that associated witkttheonstruct in Lisp
[Stee84] and Scheme. In this semantics the direct environment computation is the same as
for theletrec  construct, but references that ocasipart of declarationseek to locate the
referenced declarations in the direct environment of the next outer conXtiiEtfor dec-
larations inY), while references that occafter the declarative regio(in the set of state-

ments) locate their referenced declarations in the direct environment of the block in which
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they occur Y:DE for statements in Y). With this semantics, the declarationsimfooth

examples would be initialized to the value of 3.

45.3 Let* Visibility Semantics

A third alternative is the visibility semantics associated withethe constructs in Lisp and
Scheme. In this semantics, each declaration introduces a new direct environment. The ref-
erences that occur in a given declaration locate the referenced items in the direct environ-

ment of the previous declaration (or some initial direct environEgt if this is the first

declaration in the block). References within the set of statements locate their referenced
declarations in the direct environment associated with the last declaration. With this seman-
tics, the declaration af in Example 8 would be initialized to the value of 3, whereas the

declaration ob in Example 9 would be initialized to the value of 4.

The direct environment associated with each declaration can be more formally described as

follows. Given:

a anordered s&D of k declarations {¢g, d,,..., d.}
b aninitial direct environmemE
We might be tempted to define the direct environment associated with each declaration as:
DE; ={d} i DE;, 17)
We would then like to be able to make the simplifying assumption that

DE =DE, =LD | DE, (18)
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where k is the last declaration. Unfortunately, this is not the casledilfdj) for some KK
¢, thenDE, will contain q but not ¢if computed using (17), and will contain both if com-

puted using (18).

For a language that does not allow homographs to be declared in the same declarative re-
gion, (18) gives the correct result for correct programs. But to accommodate languages
whose semantics allow homograph&i, we provide a different formulation of the direct

environmenDE;. Given:
a anordered s&D of k declarations {¢g, d,,..., d.}
b aninitial direct environmeE
c anempty sdtD

We define a partial subsetbD, LD;, as follows:
LD; = {d;} [l LD, ; ={dy, d,..., d} (19)
and the direct environment associated with each declaration:

DE; =LD; { DE;, (20)

It is now a straightforward exercise to show that (18) follows (Appendix C Theorem 33).
Note that for completeness, we must include the implicit declarations of named blocks as

well as well as the explicit declarations from the declarative region in th®set
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4.6  Visibility Within a Declaration

46.1 Let* Semantics

While discussinget* semantics in the previous section, we did not discuss the origin of

DE,. The selection of this set is important, for it affects the visibility of a declaration (a

function, for example) within itself. We must first extend our notation to indicate which de-
clarative region that each set of declarations is associated with. We shall use a subscript to
indicate which specific direct environment belonging to that declarative block we are refer-

ring to. For exampleX:DE, would be the direct environment belonging to declarative re-

gion X that is associated with the declaratiorYah moduleX.

Consider the program given in example 2-5. If wéaetorial :DEy=X:DE,, where
X:DE,, represents the incremental direct environmeX jost after the declaration of,

then factorial is not visible within itself. On the other hand, if we f&ctori-

al :DEy = X:DE;,orig thenfactorial s visible within itself.

X: declare
b : integer;
function  factorial(a:integer) return integer is
begin
if a=0 then
return 1
else
return a * factorial(a-1);
end if;

end factorial;
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begin
b := factorial(17);
end X;

Example 10 Recursive Reference Nested Within a Declaration

Another situation that warrants consideration is depicted in Example 11. In the declaration
of a that occurs within the block, there is also eeferenceto a that is part of the initial-
ization. In which direct environment do we attempt to locate the declaration referred to by

the reference ta? Two obvious choices are analogous to those that we udef fabove:
X:DE_, or X:DE,, . Athird possibility, and the one usitAda, dictates thawithin the dec-
laration, the name of the item being declared is not allowed to be used.atalmodel
this, we introduce a new environmefiDE!{, for use within the declaration that is identical

to X:DE,, save that it does not contain any declarations with the identfier “
X:DE} ={d [ X:DEy | identifier(d)# “a” (21)

It is in this environment that we seek to resolve references that occur within the declaration.

Note that this alternative is also a third possible candidategr

X: declare
a : integer :=4;
begin
Y: declare
a :integer := a; -- illegal Adal
-- where does the initial value
-- come from?

begin
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null;
end;

end;

Example 11 Recursive Reference Not Nested Within a Declaration

4.6.2 Compilation Diagnostic Aids
The approach used in (21) has the disadvantage that if a reference fails to locate the desired
declaration inX:DE} it is impossible to determine just by looking@bDE}, whether a dec-

laration was not found because there was no visible declaration or because the otherwise

visible declaration was filtered out because of a name conflict. An alternative approach is:
X:DE} ={(a,0)} i XDEy (22)

where &,0) is a “fake” declaration that is a homograph of anything naraedri‘this way,
references that resolve to a dummy declaration will indicate name masking, while referenc-

es that find nothing will indicate missing declarations.

4.6.3 Letrec semantics - Fully Recursive Referencing

In theletrec semantics of Scheme, the direct environment of the block containing the dec-
laration serves as the source for all references that occur within the block, regardless of lo-
cation. In Example 11, since the reference tacurs immediately within the body ¥f

we look inY:DE to locate the declaration that is being referred to, which in this case is
(a,aldY). We thus have a recursive reference, which, in this particular case, is undesirable.

Note that this style of visibility computation places absolutely no restrictions on references

that occur within declarations.
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This semantics implies that machines are visible to the references that define the machines,
i.e. the machines may be recursively defined. For example, smépIX:LD, then

(v,Y)LIX:DE (by (16)), and X,Y)LIY:DE (also by (16)) unles¥:LD contains a homo-

graph of ¢,Y).

4.6.4 Let semantics - Non-recursive referencing

In let semantics, the new declaratioraa$ not considered to exist until the end of the de-
clarative region in which occurs. Thus, in example 2-6, we would looKiDE to locate
the referenced declaration, and thus locaj@[(IX). This semantics also implies that dec-

larations are not visible to references nested within themselves.

4.7  Ada Declarative Region Visibility (partial)

The visibility rules of Ada [LRM] utilize the name restricted referencing of (22) within dec-
larations that do not, in turn, contain other declarations. For declarations that do contain

other declarations, there is some variation in the computatiDigfFor a package spec-
ification, generic package specification or baflyf:DE, = X:DE,,, whereY is a local dec-

laration ofX. For any other specification Y;DE,= (a,0) 5, X:DE,. Note that the de-

clarative region containing formal parameter specifications is actually part of a specifica-
tion, even though it might be contained in a subprogram body declaration, and all

references in this region must use the name restricted referencing of (22).

4.8 Referencing Declarations from Other Scopes

In the previous sections, we have associated a distinguished pair of envirohDeaits)

DE, with each block. We shall now use these environments to describe Ada’s selected
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component or “dot” notation. This notation is intended to make it possible to reference a
declaration that might not otherwise be visible or unambiguous at a particular point in the

program.

The definition of thelot notationin our model is as follows: Given the expression oc-
curring in contex¥, if there is a uniquex(X) in Z's direct environment, and a uniqueY)

in X's local declaration set, théhis the designated declaration. More formally,

if LIx,X) [ Z:DE andXis uniquely designated (there are no other declarations

with the identifierx), and

[Xy,Y) L X:.LD andY is uniquely designated

thenY is the designated declaration.
To illustrate this, consider the program of Example 12, in which we find the following sets:
X.LD ={(a,alIX), (@,Y)}
X:DE ={(a,al0X), @X), @Y), (integer ,Int )}
Y:LD ={(a,aldY)}
Y:DE ={(a,allY), @,X), @,Y), (integer ,INnt )}

Note that these sets have the same contents regardless of which declaration semantics is

used.

X: declare
a : integer;

begin
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Y: declare
a : integer;
begin
X.a:.=1,
Y.a:=2;
X.Y.a:=3;

X.X.a :=4; -- error: fails to resolve a
end Y;
end X;

Example 12 Referencing Declarations from Other Scopes

In the first assignment statement, we have the exprezggigmwith semantics “findX in
Y:DE.” X must designate a block (we will generalize this later), and we loakifioX:LD ,
thus findingaLIX. In the second assignment statement, we lool fior Y:DE, and then
look for a in Y:LD, thus findingallY. In the third statement, we first fird in Y:DE,
then findY in X:LD, and finally finda in Y:LD, thus locatin@LlY. In the fourth and final
statement, we have a computation that fails: we can resolve the first refer¥noe't®E,

but there is ndXin X:LD. Thus the reference in this statement is illegal.

While this explanation of dot notation is intuitively simple, it must be extended in order to

represent Ada’s use of the construct. Consider the program fragment in Example 13.

X: declare
a : integer;
package Y is
a :integer :=1;
b : integer := X.a;

c :integer := X.Y.q;
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d : integer := X.Z.a; -- error: fails to resolve in Ada
end Y;
package Z is
a : integer;
b : integer := X.a;
c :integer := X.Y.q;
d:integer := X.Z.q;
end Z;
begin
null;

end X;

Example 13 Declaration Ordering Affects Dot References in Ada

Here we have used Ada packages, which, for the purpose of this example, can be consid-
ered to be blocks whose declared machines continue to exist beyond the execution of the
code within the blocks. In this exampkLD contains bottY andZ, but the reference to

Z within Y is illegal in Ada, sinc& was not declared (sequentially) until after the declara-

tion of Y. (Note also that ilY andZ had been blocks, the referencests declarations

would not have been legal, since they do not persist beyond the scope of the block.) Our
present interpretation of the dot notation would successfully laGatad is thus inconsis-

tent with the Ada interpretation. Rather than lookinihD for Z, we should have looked

in X:.LDy, which is the incremental local declaration set that existed immediately after the

declaration ofY.

This solution must be generalized to deal with a lexical ancestor, no matter how far re-
moved, anywhere within the dot notation. We begin by defining a new relg(i@dnB),

the parent relation, wher& andB are both machines, a8l JA. We next define the or-
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dered set of ancestorsBfasAncestors(A) = {d,, d,,... d. | d. = B andLli P(d,, d.,;)}. We

now consider dirst approximation to Ada dot notatioisiven the expressiony occur-
ring in contextZ, if there is a uniqu (either found as{X) in Z's direct environment if
X is the first element in a dot expression, or located by a previous evaluation of the portion
of the dot expression to the left of the dot being currently considered), then there are four

cases:

1 Case 1X=Z (Xis the current context): if there is a uniqueY] in the current

X:LD, thenY is the designated machine.

2 Case 2Xis an ancestor of (X LJ Ancestors(Z)): let i be the position oK in

Ancestors(Z). If there is a uniquer(Y) [ X:LDOI , thenY is the designated

i+1

machine, where;d, is the immediate descendantthat is also an ancestor

of Z.

3 Case 3Xis not an ancestor & (X [J Ancestors(Z)) andX is a parallel ma-
chine with respect to the current contextiff,Y) L1 X;LD andY is uniquely

designated (it is the only machine associated withthis environment) thed

is the designated declaration. Typical examples of parallel machines are vari-
ables, packages and task instances. An example of a non-parallel machine is a
subprogram: its component elements do not exist until the subprogram is called,
and do not persist past the end of the subprogram’s execution. The only time
that these elements may be referenced is during the execution of the subpro-

gram, and this is covered in case 1 or 2.
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4 Case 4Xis not an ancestor @ (X [ Ancestors(Z)) andX is not a parallel
machine: then none of the declarationXafre parallel, and the referencevto

is meaningless.

For an expression involving multiple dots, suclA®&sc , the expression is evaluated left-
to-right, using the algorithm above: firsB is resolved, then the resultibyjis used in re-

solvingB.C.
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5.0 Applying Constructive Semantics

The intent of constructive semantics is to provide an interpretation of a program as the spec-
ification for an abstract state machine. We are now in a position to specify the constructive

semantics of a programming language using the results of the earlier chapters. The style of
this semantics will be denotational, showing how each construct in the language can be in-
terpreted as a machine that is defined by the composition of the denotations of its compo-

nent parts.

A programming language defines a number of basic data types and operations as given el-
ements of the language. We assume that the machines that these data types and operations

denote are given as part of the formal semantics of the language.

We will take a subset of Ada as the basis for showing how a constructive semantics for a

programming language can be given. This subset includes many of the language features
of Ada, including declarative blocks, composite types and exception handling. Packages

and tasks have been omitted because they differ little from declarative blocks in their se-

mantics except for their extremely complex visibility computation rules, which are ana-

lyzed and modeled in [Brow90].

In giving the semantics for each construct, we will not provide a complete Ada semantic,
but rather explore a variety of semantics that might be given to the construct. In most cases,

one of the semantics that we will give closely approximates the actual Ada semantics.

5.1 Elaboration: From Programs to Machines

If a program is the specification of a state machine, somewhere along the line this specifi-
cation must be converted into an actual machine. While one might be initially tempted to

say that this is the role of the compiler, the compiler in reality simply generates a series of
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binary numbers in a file that represent ithiéal state of some other machine, namely the

computer in which the program will be executed.

Converting a specification into a state machine is not necessarily a one step process. The
obvious counter-example is the interpreter, which does the conversion piecemeal. But even
a compiled language may not be convertible into a complete state machine at load time. For
example, some Ada data type declarations (which we shall be interpreting as definitions of
machine types) are allowed to depend upon values computed previously in the program.
Thus the machines defined by these type declarations are not even fully defined until part

of the program has been executed.

In providing a semantics for a program, we are not concerned about the detaig af
compiler converts a program into a state machine. Our concern is to spetighthaor

of that machine after conversion. However, we shall have frequent occasion to refer to this
process of conversion, and thus, borrowing a term from Ada, we shall call this @latess
oration. In fact, the method of specifying our semantics is simply to give a formal defini-

tion of elaboration.

5.2 Concepts of Type
The term type frequently brings to mind differing and possibly inconsistent concepts. The

three dominant concepts seem to be that a type is either a set ot valbekavioral (in-
terface) specification, or an implementation specification. Our semantics provides a per-
spective from which we see that these three concepts are not inconsistent, and are in fact

closely related to one another in a very formal way.

1. Or a representative of the set, as is the case in Denotational Semantics
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One simplifying factor resulting from the state machine perspective is that values, per se,
do not exisin the state machine model! The closest that we can come to the concept of a
value belonging to a set of values is the current state of a value machine capable of encoding
the values from the set. But there is an important aspect of the value concept that must be
considered: the notion of equivalence of values. This concept is provided by the state type
definition of section 2.5. If we assume that the machines of the state type are value ma-
chines, then the isomorphic relationship between the machines (actually between the ac-
tions of one machine and the actions of another) enables us to establish the equivalence of
values being represented by different machines (we will later discuss a machine that actu-

ally tests membership in this relation).

Now when we are working with (interacting with) a value machine, we are not directly ob-
serving the state of the machine (i.e. the encoding of the value being represented): we are
only able tainfer the intended value from the actions to which the value machine will re-
spond. For example, if the value machine shown in Figure 11 happens to be\f stea

it will interact via actiornl, indicating that the value 1 was being represented, but would
not interact via the actioo? or 03 which would indicate that some other value was being

represented.

What we learn from this is that the only thing that we can observe about a machine is its
behavior in terms of its interactions with other machines (its actions). Our first notion of
type has thus become a special case of the second notion, i.e. a behavioral specification. In
most cases, we shall see it declaration of a type in a programming language is both

a behavioral specification and the specification of a machine that implements that be-

havior.
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5.2.1 Simple Data Types

The simplest notion of type that we find in programming languages is that of a set of values,
and these values are distinct from the values of every other type. For each set of values that
we wish to represent, we define a state type of value machines capable of representing that
set of values. The pre-defined or built-in types of a language are readily modeled as pre-

declarations of a number of state types.

5.2.2 Types with Structure

In modern programming languages, we have begun to see more complex data types arise:
the C union, the Ada variant record, and the subclass in C++ to name just a few. While we
will not give semantics for these types in this work, it is worth outlining the general ap-

proach to modeling these types in constructive semantics.

The C union is a data structure that may take more than one fdphMf... M, are the

state types for the various alternatives, then a first attempt at a model might take the form:

MO MO..0OM,

This would partially capture the desired semantic. Unfortunately, if this were to be used as
the model for a variable, once an action belonging to one of the machines has occurred, then
the machine could never take on values belonging to the other types. To model this situa-
tion, we need to add an additional machine, similar in structure to the pointer machine that
we will describe later, that will keep track of which machine holds the “current” value, only
allowing read operations on that machine but allowing write operations on all of the ma-

chines. Such a composition might take the general form:

CIM|M]...IM
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whereCis now the controlling machine, and the actionMof M |... | M, would be hidden

(C acting as an intermediary for all operations).

In variant records, the machifisbecomes explicit - it is the variant part of the record. From

an external point of view, all variants of the record share the behaihraoid depending

upon the value thdE currently holds, the machine may behave @BV} or C|M or any

of the possible variants of the record. Stated another@adgfines an abstract type (recall

that using an abstract type says that the actions are restricted to thidfee thfe purposes

of determining behavioral equivalence) that is common to all of these machines. Thus the
state types defined &g |M andC|M, and the rest of the possibilities are all of the same
abstract typeC. This readily generalizes into a model for object oriented languages, in
which Cis the parent class, afi|M, C| M, etc. would be its children. We also note that,

since a state type can be of more than one abstract type, the model covers multiple inherit-

ance as well.

5.3 Supporting Data Structures and Functions

We define some auxiliary data structures and operations for use in giving the actual seman-

tics of expressions.

5.3.1 Environments

An environmentE:ldexM is a relation between identifiers and machines.

Revised 1/28/99



Page 98

5.3.2 State Types

The approach that we shall take to defining state types is to give the specification of the

prototype machine and then keep track of the machines of that type as they are created. To

record these relationships, we define the reldiateType:
StateTypeMxM

where the first machine is the machine whose type is being given, and the second machine
is the prototype machine of the state type. Note that the prototype machine is in the relation

mapped to itself.

5.3.3 Abstract Types
We keep track of the relationships between types by mapping the prototype machine of the

subclass to the prototype machine of its parent type iAbactType relation:
AbstractType:MxM

Where both machines are prototype machines, with the first type being a subclass of the

second.

5.3.4  Signatures of Subprograms
In order to do overload resolution, we must keep track of the parameter and result type pro-

file of subprograms. We define tBégnature relation for this purpose, where:
Signature:MxM*

maps functions (the state type defining the function) onto an ordered list of the state types

associated with their arguments and return types. In this relation each entry is of the form
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(M{M,M,M,...M}) and {M,M,M,...M}LIM* is an ordered list of state types. We note
that if the state type on the left is not a subprogram, Sigaature maps the state type to

itself. We further note that each state type only appears once on the left side of this relation.
We establish the convention that the first element of the signature is the return type, and we

shall use the idle machirefor this first element if the subprogram is a procedure.

5.3.5 Type Structure
We gather these three elements together into a data structure that we shiglpeadtraic-

ture. We define a type structufleto be a triplel =(StateType AbstractType,Signature)

5.3.6  Finding the Type of a Machine

We define the semantic functidriype:M — M that returns the type of a machine. Formal-

ly, this function is defined by:

Type(M = M iff (M M,))IStateType

5.3.7 Finding the Argument Signature of a Machine

We define the semantic functiédsrgSig:M — M* that returns the signature of the argu-

ments of a machine. Formally, this function is defined by:

ArgSig(M = MM,,...M, iff (M s.t. M {M,M,M,,...M}) OSignature

where (M, M ,M,,... M} is an ordered set of state types. A consequence of the waighat

nature is defined is that iMis not a subprogram, théargSig(M) = {}.
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5.3.8  Finding the Return Signature of a Machine

We define the semantic functié®etSigM — M that yields the return type of a machine.

Formally, this function is defined by:

RetSigM =M, iff (M,M,...M s.t. M (M,M,M,,...M))OSignature

A consequence of the way tHaignature is defined that iMis not a subprogram, then

RetSigM =M

5.3.9 Finding the Signature of a Machine

We define the semantic functi@ig:M — M* that returns the signature of a machine type.

Formally, this function is defined by:
Sig(M = ¥ iff (MMF)OSignature
We note that for all types except those representing functions,

5.3.10 References

We present a slightly simplified view of references and overload resolution here, postpon-
ing the formalization of more elaborate overload resolution schemes for later work. When
we seek to locate a machine by name in an environment, we will either not use any type
information, or we will specify explicitly the argument signature for the subprogram that

we are seeking.

We define the simple reference operaf@f:1deXE — M to be a mapping from environ-

ments and identifiers to machines. Formally, this operation is characterized by:

Ref(ide ,ENV) = Miff (ide ,MUENV andLdM#M (ide ,M)JENV
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Note the requirement that the machine be uniquely identified. If no machine is uniquely
identified, we say that the reference is undefined, and we require that all of our semantic
functions be strict in the sense that any composition containing an undefined machine is,

itself, undefined.

We define the typed reference operailyypRef:1dexE — M to be a mapping from envi-

ronments, signatures and identifiers to machines. Formally, this operation is characterized

by:

TypRef(ide .ENV ,sig) = Miff (ide ,MENV andArgSig(M = sig and
[OM#£M(ide ,M)LJENV I ArgSig(M) # sig

Note again the requirement that the machine be uniquely identified.

5.3.11 Getting New Machines of a Type

In our semantics we will frequently have a prototype machine (a state type) and wish to get
a new machine of that type. We define the semantic funbliew:M — M for this pur-

pose. What this function really does is to choose an index i into the machines of this type

that has not been used yet and relabel the prototype machine according to this index:

New(M =M@,._i]

5.4 Elaboration: Formal Definition

Elaboration is a mapping from a language term, a local declaration set, a direct environment

and a type structure to a machine:

E:.LXEXEXT - M
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The first term is the language expression whose meaning is being determined. The second
term is an environment that is to contain local declarations. Typically, this environment is
modified in the course of elaboration. The third term is an environment that contains ma-
chines that have been defined elsewhere that may be used in the course of performing the
elaboration.The fourth term is a type structure, which may contain some information ini-

tially and may also be added to during the course of elaboration.

5.5 Basic Data Types and Operations

The state types for primitive data types and their associated operations are taken as being
given as part of the language specification. In a formalization of the language, specifica-
tions of these machines in HCCS should be given so that there is no ambiguity about the
behavior of these machines. We have already given an example of a primitive data type (the
3-valued variable in section section 3.1.2 on page 50) and an associated operation (the as-

signment operator for 3-valued variables in section 3.2 on page 54).

5.6 Variables

A variable is a machine for holding values. The type of the machine is either partially or
entirely specified by the type of the variable, depending upon whether or not the abstract
type declared by the variable has other state types (subtypes) related to it that may appear
as actual values. For the purpose of discussion, we shall consider a state type ti@t does
have any subtypes to baimple typeand a state type thddeshave subtypes to becam-

plex type We note that the subtype relation in the type structure contains the information

necessary to decide whether a type is simple or complex.

We will describe the semantics of a variable of a simple data type here, and leave the se-

mantics of complex types for a later work.
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5.6.1 Variables of a Simple Type

Variables of a simple data type are modeled as a value machine belonging to the indicated

state type. We locate the prototype machine of the state type and make a new copy:

E([ variablename : typename ;] ,LD, DE, T)
= M=NewM)

where
M = Ref(ide ,DE)

with side effects adding the new declaration to the set of local declarations and recording

the type relationship in tHetateType relation:

LD =LD U {( variablename , M}

StateType = StateType 0 (MM)

5.7 Pointers

Pointers are an indirect means of accessing a machine of a particular type. We give a se-
mantics here for a strongly typed pointer. The machine we will use to represent the pointer
will actually have two components, one being a variable that indicates which machine is
being pointed to, and the other being an interaction machine that re-directs actions to the

appropriate machine.

In order to define the variable, we must first define its state typel betthe abstract type
that we wish to have a pointer to, andAdstractIndex(M T7) be a mapping from machine

Mto itsindexin the set of machines belonging to the specified abstractiyper every
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abstract typel' we assume that there is a corresponding statefotestractindex
capable of representing the values of the indices. Then the variable part of the pointer is just

a variable of this type:
V.= New(TAbstractindex )

We leto 1, be the action that the variable would take to indicate that the pointer is pointing
to the first machine belonging to abstract tyhe 2, indicate that the second machine is

being pointed to, and so on.

Now we define the interaction machine. Our strategy is to use the actions belonging to one
member of the abstract type (we will use the actions belonging to the machine whose index

is 0) as thénterfaceto the access type, and re-direct these actions to the machine designat-
ed by the variable. Let;; LIACt , be the jth action on the ith machine belonging to the
abstract type. Then we define a prototype interdcidor all possible machines of abstract

type T with the following equations, lettinly be the initial state:
Il =al,
| o= ag@lvaol oUagelva; .l oU...Uagelvanl o U

o P2varol o Uage2va, .l oU...0age2vas,l o U

ag®@Mamel o U agemanl oU...Uagemama.l o U
.l

where n is the number of actions on a machine of this abstract type, and m is the number of

machines. Each term corresponds to a single action on a single target machine. For exam-
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ple, the actiom, om,a,; occurs if and only if another machine attempts to interface with
actionay;, the pointer is currently pointing to machine m (indicated by the variable re-

sponding tam,) and the machine being pointed to responds to the agfipn

Thus the semantics of the access type declaration in Ada would be:

E([ type accessname is access typename ;] ,LD, DE, T)
=M=V, |1 O

whereV; andl » are as defined above and the abstract fypeRef(typename ,DE). We

also have the following side effects:

StateType = StateType O (MM
AbtractType = AbtractType I (M T)
AbtractType = AbtractType I (M TAbstractindex )

Note that we have a case here in which a single state type belongs to two abstract types.
When restricted to the actions BAbstractindex it behaves like a variable of that

type (so that we can set the value of the pointer). When restricted to the actlohbef

haves like a machine of that type so that we can interact with machines dt Wsethus

have an instance of what is commonly referred tmal$iple inheritance

5.8 Statements

Statements are the basic unit of execution in a programming language. The most basic
statement is the direct invocation of an operation such as in an assignment statement or the

invocation of a subprogram. In covering the semantics of subprograms, we shall see that
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the semantics of operators and subprograms is uniform both at the statement level and with-

in expressions.

Next, we shall proceed to give semantics for the infamous goto statement, followed by its
modern counterpart, raining an exception. Finally, we will conclude the discussion of state-

ments with the semantics of a loop.

5.8.1  Subprogram Calls and Expression Evaluation

The semantics that we give for subprogram calls encompasses the invocation for both op-
erators and subprograms. This treatment of operators as pre-defined subprograms allows
user-defined versions of these operators to be declared in a program and used consistently
throughout the program. The newly defined operator affects the visibility of the original op-

erator according to the visibility rules of the language

We will give several representative formulations for calling two argument subprograms
which can be readily generalized to an arbitrary number of arguments. In defining these ex-

pressions, we will frequently need to know the name of the operation at the root of an ex-

pression. We define the syntactic functl@ot(expression) that returns this identifier.

The simplest form of subprogram call assumes that the arguments are simply references to
existing machines (thus requiring no elaboration of the arguments) and further assumes that
the arguments are of the correct type. We arrive at a relatively simple semantic for our sub-

program call:

E([ subprogramName (<argument  ;>, <argument ,>); |, LD, DE, T)

= New(RefubprogramName, DE))[M/P;,M/P,] U
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whereM =Ref(Root(<argument ;>)), M, = Ref(Root(<argument ,>)), and[M/P;,M/P,]

is a minor abuse of our mapping notation indicating that the actions of the formal parameter
P, are mapped to the actions of actual paranidteand similarly fol®, andM,.. This as-
sumes, of course, thB, andM are of the same type, and similal®y andM, are of the

same type.

We now extend the semantics to include a modest amount of type checking. In this scheme,
type information propagates only in one direction: upwards from actual arguments to func-

tions.

E([ subprogramName (<argument ;> <argument ,>); ], LD, DE, T)

= New(TypRef(subprogramName, DE,
{RetSigM)*RetSigV)}))[M/P1,M/P]

The semantics given for the previous two examples will work correctly if the argument is
an already instantiated machine instance as opposed to the prototype machine of a state
type. If the reference to the root of an argument turns up a prototype machine instead of an
instance, then we must create a new instance of that state type by elaborating the argument
as part of the elaboration of the subprogram call. We thus get (ignoring type checking

again):

E([ subprogramName (<argument ~ ;>, <argument ,>); ], LD, DE, T)
= [New(RefubprogramName, DE))[M/P;,M/P;] |

if Type(M) =M thenE([ <argument ;>1, LD, DE, T) else0 |
if Type(M) =M thenE([ <argument ,>], LD, DE, T) else0 [
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This almost gives us the semantics that we want, except for a possible problem in the order
of evaluation: we have not constrained the arguments to ensure that they are evaluated be-
fore the subprogram itself is evaluated. To accomplish this, for each argument that requires
elaboration, we introduce a new local variable to carry the result of the argument evaluation
forward to the subprogram itself. Ignoring type checking again, and leaving out the condi-

tionals (we assume that both arguments require elaboration) we now have:

E([ subprogramName (<argument >, <argument ,>); |, LD, DE, T)

= [NV,|V,| E([<argument ;>], LD, DE, T)[V./out];
E([ <argument ,>1, LD, DE, T)[V./out];
New(Ref(subprogramname , DE))[V 1/P,V./P,] (Sort(V,)USort(V,)

where[V,/out] relabels the output formal parameter with the actioné,;ofNote that we

have somewhat arbitrarily determined an order of evaluation for the actual parameter ex-

pressions.

In [Brow89] we have explored event more complex type checking and overload resolution
schemes. While these schemes add significantly to the type information that is passed
around between references (the reference functions themselves become very complicated),
the basic structure of the elaboration in terms of the structure of instantiated machines still

remains the same.

A final note on subprogram calls. We have made no distinction between functions and pro-
cedures in this semantics, nor have we made any distinction between calls that occur as an
actual statement and calls that occur as part of a subexpression. We note that if one of the

actual arguments to the subprogram was accidentally a procedure, then the typed reference
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to the subprogram would fail to resolve to a machine. This illustrates the generality of this

approach to semantics.

5.8.2 Go-To

One of the oldest control constructs is the go-to statement. While a go-to appears to be a
simple jump to the start of a particular machine’s operation (its activation), we will almost
certainly be in the middle of executing another machine when we execute the go-to. If we

wish to exit this machine in such a way as to leave it ready to execute again, then we must
add amabort action4 to return the machine to its initial state without performing the idle

action. The following construct illustrates the use of the abort action in a trivial machine:

M=a.ML ¢ .M

M=aMOiMOe.M

Note that if the abort action occurs while the machine is in its initial state, the machine sim-
ply returns to its initial state. On the other hand, if the machine is in some other state, like
M, the abort action returns the machine to its initial stiteout performing the idle action

[, which would indicate that the machine had terminated in a normal manner, and could
well trigger other activity. This is the essence of the abort action: it returns the machine to
its initial state without indicating that the machine has terminated normally. We note that

the abort action, like the activate and idle action, would have to be unique to each machine.

We must also consider the problem of aborting a collections of machines in a parallel con-

struct. Consider the following:

A M .. IMO
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In giving the expansion of this term into HCCS (section 3.3 on page 57), we might now add
an additional term that ties the abortion of the overall construct to the abortion of the indi-

vidual machines in the construct:
(¢ 4,6 .¢,)

where X designates the actions unique to the parallel construct itself. A machine can now

abort the entire parallel construct by interacting with«heaction.

We note that the ability to abort the construct depends upon the willingness of each ma-
chine in the construct to perform an abort. This behavior must be designed into the ma-
chines involved, and is a significant issue in the specification of the semantics for a pro-
gramming language, particularly when parallel constructs such as Ada tasks are involved.
We shall also see shortly that in many cases we will not wish to abort all of the machines

in the construct, but selectively abort some of them.

We now return to a discussion of the go-to statement. The destination statement of a go-to

might be of the syntactic form:
label : <statement>

We will elaborate this construct into two machines, one being the normal statement elabo-
ration, and the other providing an alternate means of activating this statement. The result of

elaborating this construct is as follows:
L:;S
whereS is the machine resulting from the elaboration of the statement itself, snalla-

bel machine (giving us the alternate means of activai)ngf the form:
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Lo=al.L, Ugl.L,

Hereg is a new symbol that implements the actual goto action by forcingabtigon of
the label machine, which is, in turn, tied to the activate actids Gfi the “;” interactor.

Thus any time that thg action occurs, the idle action for the label machine occurs, this

triggering (through the “;” operator) the activation of the following statement.

The semantics for the labeled statement is thus:

E(L/abel :<statement> 1,LD, DE, T)
= L'; E([<statement> ],LD,DE,T)
where
L'= New()

whereNew(L) gives us a fresh copy &f with new actions (in particular, a neyaction

unigue to this label).

Now in order to effect the go-to, we of course require another machine to interact with this
label machine in order to start the statement again. Accordingly, we define such a machine
and associate this machine with the label name in the environment as part of the elaboration

of the label itself, thus giving us the side effect:
LD =LD [ (fabel ,New(GoTO0)[g'/jump ,# sod* 4)

where we again abuse the relabeling notation to indicate that thejantiprin theGoTo
machine is mapped to thgaction in the newly created’. Also, the actior# g of the

GoTomachine is mapped to the abort action of the enclosing sequence of statements.
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The GoTo machine itself is simply:
G = 0.4 ¢ o jump.G, [ ¢ .G,

whereo_S aborts just the machines in the enclosing sequence of statementsg &d
dummy action provided on this statement so thaﬁ@action will succeed in aborting all

of the statements in the sequence, including this one. Note that this machine does not, in
fact, abort: it will perform th@mp- action before returning to its initial state. Note that this

machine never executes an idle action.

Finally, the goto statement itself has the semantics:

E(|[goto label ;] , LD, DE, T)
= New(Ref(avel , DE))
To illustrate the behavior of the following program fragment:

T: b :=2*a;

goto b;

Letting L1 be the label machine associated witlv}, be the machine resulting from the
elaboration of the assignment statement Mgbe the goto machine, the elaboration of this

fragment would result in the following machine composition:
Lri Mo Ms| (@ s#a¢6)*

where ¢ SO_AO_G.)* is the term added by a sequence of statements elaboration that aborts

each of the statements in the sequence. Expanding into HCCS, we have:
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Lo= (Ot.Lo O grl.Ly) | (I_LaA-)* N (I_AaG-)* |G =(0.¢ G‘_S-QT-GO [ ¢ 5.Gy)

Let us follow the behavior through one cycle. Whgyis first activated, it will perform the
actiond 1, which will interact througlﬁLaA to activate machinl}, (the assignment state-
ment). When the assignment statement is through, it will execute its idle action, which,
througthaG, will activate the goto machine. The goto machine will perform the action

¢ GO_S, which interacts with the paralle$ QO_AO_G.)* term to idleM, (note the use of
“‘dummy” O_G). This gets all of the machines in the sequence of statements back to their ini-
tial state except for the goto statement itself. The goto now perforngs tieion, which
interacts with gl, on the label machine, which in turn via , activates the assignment
machine again, thus implementing the goto. Note that the aborting of the sequence of state-

ments implies that machines that have not been activated yet (are still in their initial state)

must be willing to perform an abort action, returning to their initial states.

We have not, as yet, explored all of the implications of the abort action, and in particular
we have not explored the implications of abort actions with respect to the parallelization,

change of scope and removal of brackets theorems. We leave this as a topic for future work.

5.8.3 Raising an Exception

An exception in Ada is the very similar to a go-to statement, except that the machine to be
activated is not in the normal sequence of statements, but is itself a separate machine. When
an exception is raised, the sequence of statements in the declarative block where the excep-
tion handler is found is aborted (thus aborting all subordinate constructs), and the machine
corresponding to the exception handler is activated. This would give the following seman-

tics for a raise statement:
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E([ raise exceptionname ;1 ,LD, DE, T)
= New(Ref(exceptionName , DE))

The exception handler itself is defined by:

E([  when exceptionName => <sequence of statements> 1,LD,DE,T)
=L"; E([ <sequence of statement> 1,LD,DE,T)

wherel' is defined as in the go-to statement, and the appropriate goto machine is inserted

in the local declaration set:
LD =LD [ (exceptionName ,New(GoOTO0)[g'/j ¢ sod® <)

where# sogis the abort action associated with the normal sequence of statements in the de-
clarative block, and not the sequence of statements provided here as part of the exception

handler.

5.84 Loop

We give two alternative semantics for loops. The first semantic involves the instantiation
of a generic loop machine with the conditional expression and sequence of statements as
parameters. This will result in a construct in which each machine is activated and idled only
once (if at all), but has the disadvantage that it is a recursive construct in which copies of

the condition machine and the sequence of statements appear an infinite number of times.

The generic loop machineOORC,S) is given by:

LOOP=a.(V | LC)\Sort(V)
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LC=(S|C|=C-V|0clc(true Os 1sLC O

false 1.LOOP))Y Og,lg,0c,lc}

whereS andC are variables that are assumed to be well-behaved machines. The generic
creates a local variable to hold the result of the evaluation of the conditional expression,

and then recursively executes the conditional expression and sequence of statements until

the conditional tests false.
For the actual loop,The recursive semantics for the loop is then given by:

E([  while <condition>
loop
<sequence of statements>

endloop; ], LD, DE, T)

= New(LOOP E([ <condition> ] ,LD, DE, T),

E ([ <sequence of statements> 1,LD,DE, T)))

If we take advantage of the ability of machines to be repeatedly activated, we can use the

following non-recursive (for the conditional and statement machines) formulation.

E([  while <condition>
loop
<sequence of statements>

endloop; 1, LD, DE, T)

= ( LOOP|V | Mcono | Msos) {Osos!sosOcon! conn} U Sort(V)

where
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LOOP=q .LC[asog[as,l_sosﬁs,a(:OND/ac,I_CONDII_C]
Mconp = [FCONP-V | E([ <condition> 1, LD, DE, T)[J
M 05 = E([[ <sequence of statements> 1,LD,DE,T)

where SOS is the sequence of statements, COND is the machine that does the assignment

of the conditional value to the variable and

LC=aclc(true oglsLCO false 1.LOOP)

5.9 Declarative Blocks

A declarative block is a collection of declarations followed by a sequence of statements and
possibly an exception handler. There are a number of possible semantics for declarative
blocks, each reflecting a different visibility semantics for the declarations that occur in the

block. We show two possibilities here.

For let or let* visibility semantics, we have:

E([ biockname -

declare
<declarative part>
begin
<seqguence of statements>

exception
<exception handler list>

end], LD, DE, T)
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= M= [O E(|[<dec|arative part> 1, MLD, DE, T) |
E([ <sequence of statements> 1, MLD, MDE,T) |

E ([ <exception handler list> I, MLD, MDE, T) O
Side effects:
LD =LD U {( blockname , M)}
MDE =MLD &} DE

For letrec visibility semantics the direct environment passed to the declarative part would

be different, giving:

M = 0 E(|[<dec|arative part> 1, MLD, MDE, T) |
E ([ <sequence of statements> 1, MLD, MDE,T) |

E ([ <exception handler list> I, MLD, MDE, T) O

5.9.1 Declarative Part

The elaboration of the declarative part simply elaborates each of the declarations, compos-
ing any machines that result in parallel. It is important to note that the elaboration of a vari-
able will return a machine. The elaboration of a function declaration or type declariition

not return a machinethe created machine will be associated with the declared name in the

local declaration sétD, but no machine is actually instantiated as part of the elaboration.

For let or letrec visibility semantics, we would have

E([ <declarative part> 1,LD,DE,T)
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= [ E(|[<dec|aration .>], LD, DE, T) |
E([ <declaration  ,>] ,LD,DE, T) | ...|

E([ <declaration ,>] , LD, DE, T) O

It is important to note that for letrec visibility semantics, the enclosing declarative block has
includedLD in the computation dDE. Thus the elaboration of one declaration could well
affect the meaning of a reference in another. This points out the importance of the order of
elaboration in determining the meaning of a program. Some languages put such severe con-
straints upon the relative positions of declarations with respect to references that the order
of elaboration is not an issue. Other languages, like Ada, provide mechanisms to specify
the order of elaboration in cases where the order may not be sufficiently constrained
[Brow90] we show that an appropriate ordering, if one exists, may be determined through
the construction of a dependency graph relating declarations and references. Cycles in this

graph indicate that no proper elaboration ordering exists.

For let* visibility semantics, we would have

E([ <declarative part> 1,LD,DE,T)

= [ E([ <declaration  ;>] , LD,, DE,, T) |
E([ <declaration  ,>] ,LD,, DE;, T) | ...|

E([ <declaration  ,>] , LD, DE,4, T) [

Here the order of elaboration is defined to be the order of declaration. For these elabora-

tions, we have:

LD, =0

1. [LRM] p. 10-11
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Prior to the ith elaboration, we have:
LD, =LD,,
DE, =LD;; U] DE,

After the ith elaboration,.D; also contains the declaration resulting from the elaboration.

After the last elaboration, we compute the returned set of local declarations:

LD =LD,

5.9.2 Sequence of Statements
Because statements may have labels on them and references to them, elaboration order is

important here as well. We show the semantics for letrec style visitfitysequential or
let* visibility, the local and direct environments are computed exactly as for the let* declar-

ative items).

E([ <sequence of statements> 1,LD,DE,T)

= [ E([<statement .>],LD,DE,T)|
E([ <statement ,>] ,LD,DE,T)|...|

E([ <statement ,>] ,LD, DE, T) U

5.9.3 Mixing Declarations and Statements

It should be apparent from the semantics given in the previous sections for declarations and

statements that there is no difference at all in their handling at this level of the semantics!

1. For sequential elaboration order and let* visibility, the computation of the local and direct envi-
ronments is exactly the same as for the let* visibility of declarations.
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Consequently, a semantics could easily be given for languages (like C and C++) that allow

declarations and statements to be mixed.

5.10 Complex Data Types

5.10.1 Simple Record

The semantics of a simple record is nearly identical to the treatment of the declarative part
of a declarative block. The major difference is that machines resulting from the elaboration
of the declarative part hewell not be returned as the result of the elaboratiborstead,

they become the prototype machine for the new state type. An entry is mad&tiatehe

Type relation mapping the new machine to itself (this identifying this machine as the pro-

totype machine for the state type).

E(|[ type recordname is record
<declarative part>

endrecord; ],T)

=0
Side effects:
M= E([ <declarative part> 1, MLD, DE, T)
LD =LD O {(recordname , M}
StateType = StateType I (MM)

We note that the components of the record can be referenced with the selected component

notation described in section 4.8 on page 87.
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5.10.2 Arrays

An array is a composition of machines (the elements of the array) and an index operation
that returns a pointer to the indicated element of the array. We concentrate first on the index
machine. LetT be the abstract type of the elements of the aifégdexType be the

state type of the index of machines of tyhandArraylndexType  be the state type

of the index into the array.

We leto 1, be the action that the index would take to indicate that it is pointing to the first
machine in the array 2, indicate that the second machine is being pointed to, and so on.
We note thaAbstractindex(M maps machinMinto the action off/ndexType that
indicates that thd/ndexType machine is pointing to machiid We letM, M, M....
be the elements of the array. We then define the interaction machine prdtgtfgean

array with the following equations, lettingbe the initial state:
Il =a.l,

| = o1,Abstractindex(M).l , O
o2Abstractindex(My).l o 1

enAbstractindex(M).l o 1
.l

where n is the number of elements in the array. Thus the semantics of a simplified array

declaration of fixed size would be:

E(|[ type arrayname is array <indexExpression> of typename ;]],

LD, DE, T)
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=0

with the side effects doing all the work. We compute the size of the array, elaborating the

index expression and allowing it to execute, placing the resut i

Viemp = E(|[Vtemp: integer; 1,LD,DE,T) |

[E(|[Vtemp:= <indexExpression>; 1, LD, DE, T) |EV.TV.O 0
We next create the prototype machine for the actual array:

M= M, = New(T) |

M =New(T) |
...

IM, = New(T) |
| A0OS0rt(Viemp

wherel 4 is as defined abovd, = Ref(typename ,DE), and n is the value encodedMp,,

after the index expression is evaluated. We also have the following side effects:
LD =LD U {(arrayname , M}
StateType = StateType O (MM
AbtractType = AbtractType I (M TAbstractindex )
AbtractType = AbtractType OO (MArraylindexType )

5.10.3 Accessing Arrays

To access an array, we simply create a modified pointer machine oFAfstract-

Index . This modified pointer initializes the variablg before activating the interaction
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machine, and hides the variaMg so that the resulting pointer acts like a constant pointer.
The variabléV; is initialized by evaluating the index expression and then usirlg,thart

of the array to map the index expression result into the initial vallé.farhe formal se-

mantics is given by

E(|[ arrayname [ <indexExpression> 1], LD, DE, T)
=0V, [ ='-V; | [O\Sort(Vp) |

E(|[<indexExpression> 1,LD, DE, T) 0

whereV; andl|  are defined as they were for pointers, V in the expressioh stands for

V;, andl = Ref(arrayname ,DE)

5.11 Programs and Subprograms

In this section, we shall describe a model of a subprogram as a state machine. We shall ini-
tially develop a call by value and return semantics for a machine that is as independent as
possible from the caller of the subprogram. We shall see that the executable body of this
machine isstrictly orthogonalto the calling program. Later, we shall see that the introduc-

tion of nested scopes and/or the introduction of other parameter passing semantics essen-
tially relax the orthogonality between the executable body of the subprogram and the caller,

and we shall explore the implications of this loss of orthogonality.

We model our subprogram as a machine that can be conceptually divided into four parts: a
part that provides local state storage, a part that copies the initial values into the local stor-

age, a part that performs the actual computation associated with the subprogram, and a part

1. As with the first subprogram semantics given, this semantic assumes<ihdeXExpres-
sion> is a function, then it is a call by value and result function. Alternate semantics, similar to
those shown for subprograms, may be used to generalize to any type of subprogram call semantics.
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that copies result values back to the caller. We can thus view the subprogram as a compo-

sition of machines:
W MMM U] Eqg. 23

whereMg is the local statél, is the machine that provides initialization of the local state,
M is the machine that actually implements the computationiVenis the machine that

copies the values back out. We note iaandM g are usually pure interaction machines.

5.11.1 Call By Value and Result

In call by value and result, values of input parameters are copied from the calling program’s
actual parameters to the subprogram’s formal parameters prior to executing the body of the
subprogram. Upon completion of the execution, values are copied from the formal param-
eters back to the actual parameters. Furthermore, the internal actions of the machine are

hidden, giving an overall composition that has the structure:
(M g[M ;M g;M o[30rt(M o) LI1Sort(Mg) Eq. 24

In ore detail, we include a storage state machine for each formal parameter (including the
implicit return formal parameter in a function) in the state machine for the subprogram. For
each parameter of mode in, we add an assignment machine to copy the initial value into the
formal parameter, and for each parameter of mode out, we add an assignment machine to

copy the values back.

Consider the following Ada subprogram:

function  F1 (a:integer) return integer is
b: integer;
begin
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b ;= 2*a;
return b;

end F1;

This subprogram has three local declarations: the formal paraaméterinternal declara-
tion b, and the unnamed return value that we shallrcaflwe let S1 be the elaboration of
the first statement, and S2 be the elaboration of the second, this subprogram would result

in the following machine after elaboration:
F1= MM ;MM OSort(M,)OSort(M ) Eq. 25
where

MSE Walvb |VrD

M, = =in-Va
Mg = Ebz |DC2,(GHVbE|:VbHVrD
M = =Vr-out
Expanding, we end up with:
F1= [V, |V, |V, | ="-Va; [IC, |[JC2¢ - Vb[J=vb-Vr:=Vr ~out | Sort(in) ] Sort(out) Eq. 26

wherein andout are action sets associated with the input and output formal parameters.

A more traditional interpretation of the subprogram would be to not have local storage for
the return value, but rather to interpret the return statement as a direct value copy to the tar-

get machine (with appropriate rearrangement of the synchronization constructs).
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F2=[V,|V,|="-Va [OC, |JC2w- Vo[V -ou)Sort(in) ] Sort(out) Eq. 27

As one might expect, this interpretation of the subprogram is behaviorally equivalent to the

first.

5.11.2 Call by Reference

In call by reference, we dispense with the local storage for the formal parameters, and any
assignment machines that were used to copy values in or out. In place of these mechanisms,
we map the actions associated with the formal parameters to the actions associated with the

actual parameters. Re-casting our earlier example in the call-by-reference form, we get:

F3= [V, | [Ic, |[JC2 v~ VbLEVe-ou]Sort(in) I Sort(out) Eq. 28

It should be noted that while this particular example is behaviorally equivalent to the call
by value and return example, call by reference is not, in general, equivalent. Consider the

following slightly altered program:

function G (a:integer) return integer is
b: integer;
begin
b :=a*a;
return b;
end F1,
Gl= [V, | Onmwv-Vb[vb-ou]Sort(in) O Sort(out) Eq. 29

This machine will generatavoin ; actions instead of the on that would occur with call by
value and result and is, therefore, not observably equivalent to a call by value and result

version of the same program.
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6.0 Discussion and Conclusions

We have shown how the semantics of a programming language can be constructively given
in terms of primitive state machines and compositions of state machines. Thus the seman-
tics of a program is given as an abstract state machine whose structure is constructively
specified by the program itself. We have shown that the dominant concepts of a program-
ming language are readily understood in terms of three basic semantic concepts: state ma-
chines, state types (sets of isomorphic state machines), and generic machines (parameter-
ized specifications of state types.) We have shown that programs, subprograms and data
types all have a uniform interpretation as state types. We have described the relationship
between the identifiers in the language and the semantic model elements that they corre-
spond to, and we have provided a set-theoretic description of the computation of visibility

in programming languages.

Constructive semantics is fully abstract in the sense that behavioral equivalence defines
equivalence classes of semantic expressions, and these equivalence classes can be taken to
be the fully abstract semantics of the expression. We have left two interesting questions
open in this area. Is there a normal form for machine algebra expressions that would ease

their syntactic comparison? Is behavioral equivalence decidable in the restricted classes of

machines used in our semantics? Brookes’ work on normal forms of synchronizatibn trees
(which underlie HCCS) leads us to believe thaffifute machines a unique (up to the or-
dering of terms) normal form exists in HCCS for each equivalence class, but we suspect
that the existence of a normal form of machine algebra expressions is precluded by the con-

straints that our machine algebra places on the form of HCCS expressions.

1. [Broo83] pp. 99-100.
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6.1 Topics for Future Work

There are a number of areas of the semantic modeling process that we have made a start in,
but which would benefit from additional work. These areas include: a more complete ex-
ploration of the notion of aborting the execution of a machine; a fuller exploration of the
type system'’s capability of modeling concepts of type, including variant record structures
and type hierarchies arising in object oriented programming languages; an exploration of
the use of generic state machines to model Ada packages, tasks and generics; a detailed ex-
ploration of the interplay between structured types and overload resolution; and consider-
ation of extending our notion of behavioral equivalence to include Hoare’s divergences

equivalence. In the following we briefly discuss each of these areas.

6.1.1 Abort Actions

In our exploration of goto and exception semantics, we found a need for an abort action that
would return a machine to its initial state without executing its idle action. We did not, how-
ever, explore the behavior of sequential and parallel compositions of machines when one
of those machines aborts. In particular, we have left for future work a re-definition of a
well-behaved machine to include the notion of abortion, a corresponding re-definition of
our composition operators and the proof that the revised composition operators preserve the

well-behaved property.

6.1.2 Modeling More Complex Type Structures

We have left for later work a description of the semantics of variant record types and the

closely related description of class hierarchies in object oriented languages. It is our con-
jecture that a complete semantics for both can be given with the mechanisms described in

this thesis. In particular, it is our belief that our definition of abstract types provide a suffi-
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cient model for the “common” behavior of a parent class that is shared between its subclass-
es. Variant records are similar, with the shared portion being the discriminant (the portion

of the record indicating which variant - subclass- is actually present in the current record.

6.1.3 Ada Packages, Tasks and Generics

We have left the semantics of Ada packages, tasks and generics for future work. As with
more complex type structures, it is our conjecture that these three language constructs can
be modeled with the mechanisms described in this thesis. In [Brow90] we have already ex-
plored the visibility computations in these language constructs. For Ada packages, it is the
specification/body visibility rules alone that distinguish packages from the declarative
blocks described in this thesis. For tasks, the notions of concurrency and synchronous ren-
dezvous have been added, but we note that both of these concepts are already fundamental
parts of our model. Consequently, we do not anticipate any problems in modeling tasks. Fi-
nally, we believe that generic types, as defined here, will provide an adequate model of Ada
generics. Generics in Ada are parameterized packages, types and subprograms whose pa-
rameters are themselves types, subprograms or objects (variables). All of these parameter
constructs are modeled in our semantics by machines, and our generic types have in them
variables whose values are machines. Thus we anticipate that Ada generics will be modeled

in a very straightforward manner with our generic types.

6.1.4 Overload Resolution

The overload resolution model presented in this thesis shares type information between ref-
erences in a very limited manner. In [Brow89] we have explored more complicated over-

load resolution schemes sufficient to describe overload resolution as used in Ada, including
the resolution of generic parameters. This work needs to be merged with the current model

to provide a complete semantics for Ada overload resolution. Additional work of more fun-
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damental interest is an extension of this work to consider the interplay between type net-
works (multiple inheritance in object oriented languages) and overload resolution. We have
already demonstrated (in the pointer semantics) that multiple inheritance can be modeled

in our type system.

6.1.5 Divergence

Hoare's failures equivalence, which we have used as our notion of behavioral equivalence,
encompasses two concepts about the observable behavior of machines: the sequences of ac-
tions that it is capable of executing (its traces), and the actions that it will possibly refuse

to take after performing a sequence of actions (its failures). Hoare [Hoar85] and Brookes
[Broo83] observe that there is a third significant possibility, and that a machine may go into

an infinite computation after performing a sequence of actions (its divergences). This we

might construe as a situation in which the machine may refuse to take any observable ac-

tion, but Hoaré has gives an interpretation in which such a machine is construed to be able
to also take any possible action once it has diverged. We have been unable, as of yet, to
arrive at a suitable interpretation of divergence in our model, and have left it out of our def-
inition of behavioral equivalence. At some point the issue of the proper interpretation of
divergence in constructive semantics should be resolved and incorporated into the notion

of behavioral equivalence.

6.2 Benefits of Constructive Semantics

We believe that constructive semantics can be used in a very practical way by both compil-
er writers and programmers. If a compiler writer uses constructive semantics to specify the

characteristics of the machines that the comp#grerateghow it implements various lan-

1. [Hoar85] p. 130.
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guage constructs), behavioral equivalence can be used to establish whether or not those
generated machines are equivalent to the constructs given by the language specification (al-
so given with constructive semantics). Furthermore, since behavioral equivalence is a con-
gruence relation, this equivalence can be established by comparing the implementation and
the language specification on a construct-by-construct basis, thus simplifying the complex-

ity of the task.

From the programmer’s perspective, we hope that programmers will find constructive se-
mantic descriptions to be readily understandable. We believe that the abstraction mecha-
nisms used in constructive semantics are very similar to those that the programmer uses ev-
ery day in designing modules. This similarity should allow the programmer to reason about
the constructive semantics in a manner similar to the way that he or she reasons about pro-
grams, first understanding the behavior of a module, and then later using that module in

some other context. This, of course, remains to be demonstrated.
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A HCCS

HCCS is the semantic model used in this thesis, and is a hybrid of work done by Milner,
Hoare and Brookes. The formal basis for this model is the synchronization tree semantics

of Brookes [Brook83].

The starting point for the semantic model is Milner's CCS, with the following modifica-

tions:

1 Instead of using CCS's flat set of actions, we use the abelian group of actions as

used in Milner's SCCS and ASCCS.

2 Milner’s + operator is replaced by the sim{lar operation used by Hoare and de-
fined in terms of Milner’s synchronization trees by Brookes [Broo83]. We will
continue to use + to represent this operation. The use of the Hoare operator

makes failures equivalence a congruence relation.

3 We alter the definition of Milner’s | operation to allow n-way synchronization
between agents, where CCS only allows binary synchronization. We provide a
formal semantics for this new operation using Brookes’ synchronization tree se-

mantics.

4 We use Brookes’ failures equivalence rather than Milner’s observational equiv-
alence. Milner’'s observational equivalence makes non-observable distinctions
between machines, while Brookes’ failures equivalence only distinguishes be-
tween machines if the machines differ in observable behavior. The use of fail-
ures equivalence allows the proof of our parallelization theorem, which is not

true using observational equivalence.
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A.l Actions

We first defineAct , the set ofictions Actions, as we shall see, can be thought of as the

labels on the arcs of state machines. Aet{...,¢,b,a,1a,b,c,...} be a set oprimitive ac-

tions,and letX be a binary operator and bea unary inverse operator. Then we define

Act , the set ofactions to be the set generated by the following rules:
Al Act
[a,b UAct:
1) axbUAct
2) alAct

In writing actions, we shall frequently omit the parallel composition operateriting st

to represens Xt .

We add the followingction axioms

axb=bxa (30)
(a xb) Xc=ax(b xc) (31)
axl=a (32)
axa=1 (33)

From these axioms, it follows that:

1=1 (34)
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Q|
Il
@

(35)

Then we have:

(Act , %, 1, )is an Abelian Group (36)

We defineAtom(a) to be the set of primitive actions thats comprised of. For example,
if a andb are primitive actions, theftom(ab) = {a, b}. By extension, ifAis a set of ac-
tions, we defineAtom(A) = [, Atom(a). For AUAct , we defineA* to be the sub-

monoid of Act freely generated b

A.2 Synchronization Tree Semantics

The semantics of our model is given in terms of synchronization trees in the manner of Mil-
ner. We will here borrow the definitions and notation of Brookes [Broo83], noting devia-

tions from Brookes as they occur.

We begin with a basic algebra over synchronization trees (Sfis)se operations are

NIL, +, anda(), whereNIL is the trivial tree:

+2 is a binary operation combining two trees:

+ is the tree (identify roots)

S T S/\T

1. [Broo83] pp. 91-92
2. This is Milner's + operation.

Revised 1/28/99



Page 135

anda(S) is a unary operation for eaah JACT :

is the tree

Thus the general synchronization tree can be expressed in the form:
S = ZaiSi+ 21815

wherea; LIAct - {1}.
In the case wherB=NIL , we have n=m=0.

If sis a sequence of observable actions, we say that a s@btiseans-derivativeof S if

there exists a path from the root®to the root ofS' whose observable actions form the

sequencs. Following Milner, we define the relatids 3 S between trees:

S B Siff S'is ans-derivative ofS

We have the following laws for ST's, lettilg T, U] ST:
Axiom 6 Associativity of Synchronization Trees
S+T+U) = (S+T)+U

Axiom 7 Commutativity of Synchronization Trees
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S+T=T+S
Axiom 8 Nullity of Synchronization Trees
S+NIL =S
Axiom 9 Idempotence of Synchronization Trees
S+S=S

A.3 Agent Expressions and Agents

We now proceed to give a syntax for the specification of a state machine as a synchroniza-
tion tree. Subtrees in the synchronization trees will correspond to syntactic constructs that
we shall call agent expressions. We begin by defifirtfye set ohgent expressiondach

of these expressions can be thought of as representing a state of the machine. Agent expres-
sions may contain variables, in which case the expressideis@atefor a state that will

be fully specified when the values of the variables are specifiedg@ntis an agent ex-
pression that contains no variables. Such an expression, in conjunction with the inference
rules that relate one agent expression (state) to the next, constitutes a fully specified state

machine.

Formally, letK = {0,1,A,B,C....} be a set ofgent constants andX = {X,Y,Z,...} be a set

of agent variablesLet X and+ be binary composition operators. @Act — Act be a

mapping fromAct to Act such thatpla) = @a) and(1)=1.If Ais a subgroup of

1. Constants are used to specify recursion. As we shall see shortly, constants are not strictly neces-
sary, since th&iX construct with variables is quite capable of representing recursive definitions.

However, the use of constants to specify recursion makes the specifications somewhat easier to
read.
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Act , letE|l Abe a unary operator that restricts the actiors tf the actions present #

Then we defineg, the set ohgent expressiongo be the set generated by the following

rules:

KO XUOE
UEFOE alAct:
Action:

1) aEOE

Informally (we will give the formal semantics latea)E means that the agent expression

a.E performs the actioa, and then performs the actions specifiedy
Product:
2) E|FOE

E | F means that the agent expression is a composition of the agent expressions represented
by E andF. Actions performed by the composition consist of either just one of the compo-
nent elementsK or F) performing an actiona§ynchronousction) or both component el-

ements E andF) performing actions simultaneouskyQchronousction).

Summation:

3 SEOE

il
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whereE; is an independent set of agent expressions frpand | is an index set) E
il

means that the agent expression represented by the summation is a composition of alterna-
tive agent expressions, and will ultimately perform the observable actions specified by ex-

actly one of the expressions in the selepfThere is one summation that we shall have oc-

casion to use frequently, and this is im&ction machineO:

0=9% E (37)

Because the set of expressions is empty, this machine never performs any actions.

In the special case of a summation involving two machines, we shall write the summation

asElF.

It is important to note that the operation being defined heretisliiner's summation op-
erator, but a generalization to an arbitrary number of terms of H{hre’s operator. As we
shall see, the behavior of the Milner and Hoare operators is the same for observable actions,

but different for the non-observable actibn

Restriction:
4 EAUE

El A means that the agent expression is specifiell bycept that any actions not At-
om(A)* are hidden. If an action is hidden, then no agent expression outéideaf trigger
that action. A related operation is to hide just the actions that #&toi(A)*. We shall

designate this with the notatidr\ A, and define this to be:
4a) E\A =E|(Act - Atom(A)*)
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Morphism:
5 FEg@UE

E[@] means the agent expression specifiedebafter the actions have been mapped as

specified by.

Recursiorn
6) fix,XEOE

where X = {X | il 1}is an I-indexed set of distinct agent expression variablEs=
{E;| ill1}is an I-indexed set of agent expressions in which the variahlesa} occur

free, and ] [ l. The expression
fix; X E

represents the solution for tHe\jariable from the set of equations;{XE;: i L1 I}, where

the symbol ~ is a congruence relation cafigzdng bisimulatiorthat will be defined later.

The prefix fi>§)~( has the effect of bindingll of the variables iX .

The system of equations that appears in the recursion expressions is not unlike the produc-
tion rules of a BNF grammar, where the expression on the right may be substituted for the

variable that appears on the left wherever the variable appears. In the simplest case of only

one variable, we omit the subscripts, givingXi&

Constant Definitions
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As an alternative to the use of the fix operation, we can use systems of equations involving
constants, where a constant is one of the variables in a recursive set of equations, and the
expression on the right hand side is one of the expressions on the right hand side in the re-

cursive set of equations. Each constant is defined to be an agent exdression

A=E

A.4 Semantics of Agent Expressions

We give the semantics for agent expressions using Brookes’ notation for synchronization

trees. Where indicated, the semantic definitions are taken from [Broo83]. The mapping

[<]:E- STis given by:
[a.El =a H )
[E|Fl =[8 [ &
[EOFT =0EIOLFI
[EAl =[H A
[El¢] = ([ET)
[A] =[EI]

whereE, FOE are agent expressios[] Eis a constant, and the tree operatiolis||, , and

(p are given by:
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S=yaS+y 1S

T=ybT+y1T

T+ 1S|T))

i—1 i—1

SIT =3 a(S|N+ $ bi(SITH+ § 1(S

i—=1

Tt

Yy a;b;(S|T;) + > S 1S

i—1i-1 i—1i =1

It should be recalled here that in the fifth term above, veherb;, thenab; = 1, and the

resulting term becomes one of the silent transitions of the composition.

SIA= > a;S; + S b,T; + )3 1(S |T) + )3 1(S|T;) 2

i—=1 i—=1

SIA= S a, (Sl A) + T 16 A
anA i—1

AS)= 5 9(a) (AS)) + T 1(@AS)

1. This is slightly different than Brookes’ definition for Milner’s | operator, which only allows
simultaneous action wheay = b,

2. This is Brookes’ semantics for Hoar{Js operator.

Revised 1/28/99



Page 142

A.5 Labeled Transition Systems

We now proceed to defindabeled transition systemwhich can be thought of as the spec-
ification of a state machine whose number of states is not necessarily finite. Agent expres-
sions are the states of these machines, and actions label the transitions between agent ex-
pressions, hence the term labeled transition system. Formkdlyelad transition system

is a triple:
(E Act {2 :aOAct)

whereE is a set of agent expressiofi;t is a set of actions, and eaéh is a relation

between agent expressions.

In this system, we have the following inference rules, derived from the synchronization tree

semantics

Action:

1
38
aE 8 E (38)
This rule says that the agent expressidn may be converted into the agent expres&ion
when the actiom occurs. (We note that the occurrence of an action means that some other
agent expression, with which this one has been composed in a product, has simultaneously

made a transition with the actian)

Summation:

1. This is Brooke’s (PRE) axiom of [Broo83] p. 168
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E 2 F, 1
— (j0l,a#1)
E 2 E,

(39)

il

This rule says that if an agent expresdipean be converted into an agent expreskipn

when the observable actianoccurs, then a summatign E; containingE; can also be
il

converted into the agent expresskgnwhen the actioa occurs.

1 y
E = E| (jDI)2 (40)
SE > YE[E|/E]

igl igl

This rule says that if an agent expresdiggan be converted into an agent expreskion

when the unobservable actitiroccurs, then a summatic{r E; containingE; can also be
ig

converted into the summaticﬁI E[E ;/E] when the action occurs.
i0

This pair of rules has the effect of preventing a non-observable transition of one element of

a summation from eliminating the other possibilities in the summation. This is distinctly

different from Milner's semanti¢s which uses the first rule only and places no restriction

on the action. The use of Milner’s semantics prevents failures equivalence from being used

as a congruence relation, which is a requirement of our fhodel

1. This is an obvious generalization of the (CO/NDference rule of [Broo83] p. 168
2. This inference rule is both less restrictive and more general than the (@R Bence rule of

[Broo83] p. 168
3. [Miln83] p. 271
4. Milner’s observational equivalence is also not a congruence relation in CCS. It is conjectured

that the use of Hoarel}  operator (which we are using here as our + operator) in lieu of Milner's +
would make observational equivalence a congruence relation in the modified system.
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Product:
E 8 F
EF & E|F 41)
FEF
EF 8 E|F 42)

These rules say that if either machine can make a transition, then that machine may make

the transition in the product.

E3aE F2LRF
ab 1 '
EF3® E|F 3

This rule says that if the agent expresdioran be converted into the agent expreskion
when the actiom occurs, and the agent expressfonan be converted into the agent ex-
pressiorF' when the actiob occurs, then the agent expresdiohF that is the product of
these agent expressions can be converted into the agent expkeddfonvhen the action

ab occurs (recall thadb is the product of the actiomsandb).

Restriction:

(@lls)

(44)

m
0))
2] |
m | m
0))
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This rule says that if the agent expresdioran be converted into the agent expreskion

when the actiom occurs, then the agent expresir§ (which is the agent expressifn

with its actions restricted to the actions preserbjictan be converted into the agent ex-

pressiorE | Swhen the actioa occurs provided that is a member of5. The implication
is that ifa is not a member abthen no transition is possible anRecall that the actioh

is always required to be a memberSf
Morphism:

E 2 F

Eg ®? g (45)

This rule says that if the agent expresdioran be converted into the agent expreskion
when the actiom occurs, then the agent expresdifip] (the agent expressida with all
of its actions mapped into new actions by the morplgscan be converted into the agent

expressiorE'[@] by the actionf(a).

Recursion

E[ixXB X 2 F
fix XE & E (46)

This rule says that if the agent expresdipean be converted into the agent expreskion

when the actiom occurs after all of the variables Xi  have been bound to the agent ex-

pressions ifE  and those bound values have been substituted for occurrences of the vari-
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ables inE;, then fix)?E (which is the solution for the ith member Xf ) can also be con-

verted into the agent expressiahwhen the actioa occurs.

The equivalent rule for constants is:

lo

E
C

= (=5

E (47)

(Y

This rule says that if the const&nts defined to be the agent expresdigmandE can make
a transition t&=’ with the actiora, then the constafd can also make a transitionEb with

the actiora.
A.6 Sorts of Agents
We now give some rules for determining the sort of an arbitrary agent.

We now define th&ort() operation, that takes as its argument an agent and returns the set

of primitive actions that appear in the agent. $okt() operation is defined recursively:

Sort(a.P ) = Atom(a) O Sort(P) (48)
Sort( %I P) =0y, Sort(P) (49)
Sort(P | Q = Sort(P) I Sort(Q (50)
Sort(Pl A) = Atom(A) (51)
Sort(P\ A =Sort(P) - A (52)
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Sort(fix, X E) = Sort(X) (53)
Sort(P[q]) = Atom(cp(Sort(P))) (54)

We also have the following theorems:

P::L and LUMimpliesP:: M (55)

a U L*andP::L impliesa:P ::L (56)
XL impIiesZ)?::L (57)

P::L andQ:L impliesP | Q:L (58)
P::L impliesP\ A:(L - A) (59)
P::L impliesP[q]:: Atom(¢(L)) (60)

A.7 Failures Equivalence

Hoare characterizes a machine in terms aibtservable actionststraces(observable se-
guences of actions) and ftlures (the actions that may not be responded to after a given

sequence of observable actions).

Theinitials of a synchronization tree are the first observable actions of the tregadée

of the tree are the sequences of observable actions that occur on any path beginning at the
root of the tree. Equivalently, the traces of a {eare the observable action sequerkes

for which S has ars-derivative. A tree canefusea set of eventXif it can make a silent

transition to a subtree none of whose initials is a memht.dfhefailures of a tree are
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the pairs ¢, X) such that the tree has sderivative that can refus¥ The following def-

initions' make this precise
» %E
Initials(S) = {a:0Act |[S's.t.SU S}
Traces(S) = {s |[S's.t.S N S}
Refusals(S) = {X| [S's.t.S H% "andXn Initials(S)=0}

Failures(S) = {(s,.X) | (S's.t.SB S andXn Initials(S)=0}

Brookes formally defines failure equivalence in terms of synchronization trees, giving us

the following axioms and inference rule on synchronization trees Syith U 0 ST2:

Axiom 10 Failure Equivalence of Synchronization Trees - B1
1S=S
Axiom 11 Failure Equivalence of Synchronization Trees - B2

S+1T+U=1(S+T)+1T+U
Axiom 12 Failure Equivalence of Synchronization Trees - B3

aS+aT+U=a(1S+1T)+U

1. Note that every tree can make a silent transition to itself
1. [Broo83] p. 96
2. [Broo83] p. 98
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Axiom 13 Failure Equivalence of Synchronization Trees - B4
1(@S+T)+1(@S'+T') =1(aS+aS'+T)+1(aS+aS'+T")
Inference Rule 14  Failure Equivalence of Synchronization Trees - R

S=S"'
aS+T= aS'+T

Now we must show that the tree operations the tree operatipnis ], | and( respect
failures equivalence. Brookes shows th@t [1 and@ respect failures equivalengeo it

remains to be shown that | and respect failures equivalence.
Theorem 15 Composition Respects Failures Equivalence
ForallS, S, T, T' ST, S=S" andT=T" imply S[T=S'[T’

Before proceeding with the proof of this theofemve must establish some supporting re-
sult. The traces dB|T are obtained by composing the traceSafndT, in the following

sense:

We define the set of atlompositionsComp(s;t) of two tracess andt by induction on the

length of the traces:

1 Comp((Lt ) = Comp(t [y = {{d [}

1. [Broo83] p106, theorem 4.3.4. Ot operation is Brooked] operation on trees, and@is
Brookes’f(S)

2. Our proof is patterned after Brookes’ proof for Milner's original | operation from CCS as found
in [Broo83] p.106
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2 Comp([als,dt) = {{alu|uldComp(s, )} [ {Lu | ullComp([als,t)}
O {[Abu |a#b, udComp(s,)} O {u]|a=b, udComp(s;t)}

Lemma 16 Traces of a Composition
The traces of a compositids|T are obtained by the compositions of their traces:

Traces(S|T) = []Comp(s, ©) wheres[Traces(S) andtUTraces(T)

~ +

Proof: by inspection of the definition of the | operation on trees.
Lemma 17 Initials of a Composition
The initials of a compositioB[T are obtained from the initials & andT:

Initials(S|T) = Initials(S) O Initials(T)
O {st |sOlnitials(S), t Olnitials(T), s#t }
[]Initials(S") O Initials(T")

~ +

wherest L1 {(s}t) | S'st.S8 S andMs.t. T T}
Proof: by inspection of the definition of the | operation on trees.
Lemma 18 Refusals of a Composition

The refusals of a compositid|T are obtained from the refusals®fandT:
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Refusals(S|T) = {x | x ORefusals(S) andx [IRefusals(T)}
O {st |sORefusals(S) andt [JRefusals(T)}

0 {x [(5st.SE S andTH T andxRefusals(S') and
x [JRefusals(T")}

Proof: by inspection of the definition of the | operation on trees.

Lemma 19 Failures of a Composition

Failures(S|T) = {(s,.X) | s []Comp(s, t) wheresUTraces(S) and

~ +

tLTraces(T), and
X={x | xORefusals(S/s) andx [IRefusals(T/t)}
O {st |sORefusals(S/s) andt CIRefusals(T/t)}

O¢x |Cust.SsM S andTit T andx ORefus-
als(S") andx CRefusals(T")}

Proof: by inspection of the definition of failures and Lemma 16, Lemma 17 and Lemma 18.

Proof of Theorem 15: By the previous three lemmas, the failures of the composition are
uniquely determined by the failures of the component trees. Since the theorem replaces
each of the subtrees with failure equivalent trees, their failures must be identical, and the

failures of the composition must be the same. Q.E.D.

Theorem 20 Restriction Respects Failures Equivalence

ForallS,S' O ST, S=S' impliesS[A=S' [A

Revised 1/28/99



Page 152

Proof; similar to Theorem 15

A.8 Equational Properties

Let Pbe the set of agents. Then QR L] P, the following theorems are valid:

P|1Q=Q|P (61)
PIQIR=P|QIR (62)

P[Sort(P) = P (63)

Sort(P) 0 Atom(S) implies P |Q | S=P|Q'S (64)
SOSort(P) implies P |Q \S=P|QS (65)
SOSort(P) impliesP\S=P (66)

(Pl T=P[(SnT) (67)
(PS\T=P\(SOT) (68)

0/0=0 (69)
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B Machine Algebra

While our formal semantics (App. A) is based upon the concepts of states and transitions,
we would like instead to talk in termsearfitiremachinesTo emphasize this distinction, we

use a bold symbdVito represent a machine. To transform a machine expression into a
CCS-like state expression, we simply replace each mabhivith the first statdV}, of the

defining expression fdvlor with the first state of any observationally equivalent machine
This conveniently allows us to conduct proofs using the calculus developed in App. A, and

convert back to machine expressions at will.

Theorem 21 Commutivity

O M;, M
MIM=M[|M
By App. A (61).
Theorem 22  Associativity:
O M;, M, M,

(MIM) My =M (M| M)

By App. A (62)

Theorem 23  Orthogonality and Symbol Hiding

OM;, M
M O M\Sort(M)

1. Sort(M\Sort(M)) ={1} definition of\
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2: Sort(M) n {1} ={1} definition of N

3: Sort(M) n Sort(M\Sort(My)) ={1} 1&2

4: M UOM,\Sort(M) 3 & definition of []
Q.E.D.

Theorem 24 Elimination of Actions

(b.M[b.M)\{b} =(M|M)\{b}

We show that the two sides have the same semantics

1. [(0.M]|b.M)\b}1=([b.-M]|b.M])\b} Semantics of \
2. [b.M|b.M] =[b.M] |[b.M] Semantics of |
3 [b.M] =b([MI]) Semantics of .
4: [b.M] =b([MI) Semantics of .
5 [b.-M[b.M] =b( [MI])Ib([MI) 2,3&4

6. [b-M[b.M] =b([M])+b([M])+1([M] | [MI)
Definition of | for ST’s

70 [®O-M]b.M)Yb}] = (b( [MD) +b([MI) +1([M] | [MI))¥b}
1&6

8 [O.M|bM))MNb}]=(@(IMI | [MI))\{b} Definition of \ for ST’s
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9 [®BMIb.MMbIT=(IM] | [MI)\{b} 8 & App. A Axiom 10

10: [M] | IMI =IM|M] Semantics of |

11: [ ®.M]b.M b} = (IM | MI)\b) 9810

12: [®.M|b.Mb}1= [(M]|M\b}] 11 & Semantics of \
Q.E.D.

Theorem 25 Elimination of Actions

(ab.M | bc.M )b} =ac.(M | M)\{b}

We show that the two sides have the same semantics

1: [@b.M[bc.M)\{b}]=([ab.M[bc.M]){b}  Semantics of \

2:  [ab.M|bc.M] =[ab.M] | [bc.M] Semantics of |
3: [ab.M] =ab( [M]) Semantics of .
4: [bc.M] =be( [M]) Semantics of .
5 [ab.M|bc.M] =ab( [M]) |bc( [M]) 2,38&4

6: [ab.M|bc.M] =ab( [M]) +bc( [M]) +ac([MI | [MI)
Definition of | for ST'’s

7. [(@b.M|bc.M )b} = (ab( [M]) +bc( [M])
+ac([M] | [M1)Xb} 1&6
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8: [(ab.M|bc.M)b}] = (ac([M] | [MI]))\{b}
Definition of \ for ST's

9: [MI|IM]I=IMIMI Semantics of |
10: [ ®-M[B-M)\b}] = (ac([M [ MI))\{b} 8&9

11 [®©-M|b.M)Xb}] =([ac. (M[M)])\{b}

10 & Semantics of .

12: [0.M|b.M)Yb}] = [(ac. (M| M)\b}] 11 & Semantics of \
Q.E.D.

Theorem 26 Associativity of ;
(M; MM =M:(M;M)

1 (MMM = (VAT Mo LA MM

Definition of ;
2. A7“D{La;) Definition of A~
3 MO0} Unigueness of anda

4 (M; MM = (M A IMTA ™S MOMELaHY 1,00
1,2, 3 & App. A (65)

5. (M; MM = MIA™ [MIA™ [ MV1,0,0,0  App. A (68)
6: M L{1;,00} Unigueness of anda
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7. AT, Definition of A"~

8 (MMM =MIA™ | (MIA ™ | MM, 0 1,00
5,6,7 & App. A (65) &
App. A (68)

9:  (M; M);M = M;(M;M) Definition of ;
Q.E.D.

Theorem 27 Removal of brackets

M | M= M [ MO
1 M| DAIE
(0, 000,.)* | M, 00.)% | M | (Hly )IM Olid | QLD 0,00, 1,1}
Definition of [
2 (0,050, ) T o L, MO oL, (1, )* {01} Uniqueness of andat
3 M| MIE
(0,050 )* | M ] (0,0)* [ M ] (Tdy)* | QG0N Ol 08,0, 1L
1,2 & App. A (65) &
App. A (68)
40 (M dy)* | 0% Ofag), ((on0ay.)* | a.)* | M) O{1,}

Unigqueness of andd
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12:

13:
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M | (M=
((@,050,0* | (@0} TM M |G MDY Ol L)
3,4 & App. A (65) &
App. A (68)

((0,001,)* | (0,00 )*) O} = (00,0001 ((O,001,.)* | (01, )*) {01y}
Theorem 25, witta :Ek,

b =0a,,c =0a,0

((0,0;00,.)* | 0,0 )M {0} = ((@,0,0,.)9)\{0,} 6 & recursive application

of Theorem 25
(@, 0,0,.)* C{o} Uniqueness ofx
(@50, | (@,a))\{ay) = (a,00,.)*

3 | A= (0,000 )% | My M ()% TG MEDY O O}
5&9
(ly)* T LMY = (Ldjy)* Similar to step 6-9

[ | A= ((0,0300)* | M| M| (L) )N Ol 01,1310 & 11

M | MO0 M | MO 12 & Definition of 1]
Q.E.D.
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B.1 Parallelization Theorem

The most important theorem of our algebra ispellelization theorenwhich was given

as Theorem 4 in section 3.5.1 on page 63:

MOM,MOM, M OM, M,0O0MO
M | M M M M; MOS=
VL[ M | M4, | MOIMOIS =
BAIM M M M MOS

whereS = Sort(M) O Sort(M) O Sort(M) O Sort(M) O Sort(M) O Sort(M) O Sort(M)
[0 'Sort(M). The proof for this theorem is rather complicated. We will first outline the proof

approach, then give the theorem proof assuming that the needed lemmas are true, and final-

ly prove the lemmas.

The heart of the proof is to show that no matter what sh4taadM, are in wherV], goes
idle (call these state& andB), if M, andM, can reach stateéd andB' when bothV, and

M have gone idleN] has just been activated) thi¥handM, can reach those states regard-
less of whether they interact wit¥, ; M or (M, x MLbr M ; M,. Next, we show that once
M has been activated only the states of machjesdM, at the beginning of the interac-

tion can influence the subsequent behavior of the composition.

Our proof will be based upon the definition of failures equivalence. Recall that failures

equivalence says that:

1 each machine has a trageand only if the equivalent machine also has a trace

t, and
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2 each machine can reject a set S after trdi@nd only if the equivalent machine

also can reject a set S after trace

For the sake of discussion, we will call the initial states of these three configupiti¥ns

andZ, with:
X= M [M|M;0V,; M OMAS
Y =3 | M | M; B, [ MO MOS

Z=4 | M IM;EM; M, BIMAS

We begin with a simple lemma that establishes that the failures of a state with no observable

actions of its own are simply the union of the failures of its successors.

Lemma 28
Oaz1:0Act -[8'st.S 28 SO

Failures(S) ={(s,4) |S 3 S’ and §A)OFailures(S')}

Proof: We begin by recalling the definition of failures and initials:
Failures(S) = {(s,4) | (S's.t. SB S andAn Intials(S')=01}

[al
Intials(T) = {a:0Act |O0Mst. TU T
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We note that ifS has no transitions other tharthen for all successofS, Intials(S) =
[sIntials(S"), Intials(S) O Intials(S), and thereforeA-Intials(S)JA-Intials(S).

Therefore every failure db is also a failure oF'.

We now prove lemma about the behavior of the three machines between the tilvje that

goes idle andV] is activated.
Lemma 29

Let Abe a possible state b at the time thalv}, goes idle, and similarly |& be a possible
state oflV} at the time thalv}, goes idle. Now let LeA\" be a possible state b, at the time

that M, goes active, and similarly I& be a possible state M; at the time thaM, goes

active. Then:

0l

ABMM;MO U ° AR (70)
gl

ABMM |MO O °AB (71)
gl

ABM;MO U “AB (72)

where the ternal,. is the activation action for the term in braces, lansl the idle action for

this term.

Proof: Expanding the terms we have, for X, the following transitidi],ages idle:

_ _ o _ _
ABI(01:01¢ )10t M )10 MICL L) ABIOIMI(T Qo MIG L) (73)
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whereMV, is the first state d¥, after activation an/} is the first state d¥} after activation.
Strictly speaking, the third term on the right should stil((togaq.)*, but sincedl . can never

happen again until the entire machine (X) is started again, we note that it is behaviorally

equivalent td and usé to indicate this.

Now M, is free to interact wit\, but may not interact with any of the other terms due to
orthogonality until it goes idle, at which time an interaction Witjar,.)* will occur. We
also note thaB will not change state by interacting with other terms since it is orthogonal

to all buta,.M, and interactions with this term cannot occur until aftenas occurred.

Interactions betweel], andA can continue untiM, goes idle, at which point we have:

ABOIMI(1,0,)*at MI(1 L) O A [BIOJOIMI(t ol )* (74)

again usind to represent terms that are inactive. Note at this poinfthats transitioned
to A, and thatA' is orthogonal to the remaining terms. Theref@rés already in its final
form (we assume, without loss of generality, #\ahas already completed whatever silent
transitions that it is going to make). NdwandB are free to interact uni¥ goes idle, at

which pointB has transformed to its final std8¢. Thus we have:

T
A BlojoloIMI(1t-)* LF A'[B[ojojojojo (75)

Putting (73), (74) and (75) together, we get (70), which is the desired resifffbe der-

ivation for (72) is similar. We now turn to the derivation of (71).

Expanding the terms we have, for Y, the following transitioMagoes idle:
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ABJ(01 01,00t . MO MI(t ) P ABIOIMIMI(tl ot -)* (76)

whereMV, is the first state d¥}, after activation any} is the first state d¥} after activation.
Now M, is free to interact with\, butM, andA may not interact with any of the other terms
due to orthogonality untlV}, goes idle, at which time an interaction w(tdl 4l ..)* will oc-
cur. Similarly,M andB are free to interact with each other, MiandB may not interact
with any of the other terms due to orthogonality ultifoes idle, at which time an inter-

action with(l Cl_qfr.)* will occur. At this point we have:

0
ABIOIMIMI(1l 1)+ L A'B'[0j0j0j0]0 (77)
Putting (73) and (77) together, we get (71), which is the desired resilt for

We conclude by observing that in each case the sole determining factors for the final state
A’ was the initial staté\ and the machinb/,. Similarly, the final stat®' was determined

entirely from the initial stat® and the machind/}.We thus conclude that our lemma is,

indeed, valid.
Proof of Theorem 4

We show that thé&ailures(X) = Failures(Y) = Failures(Z). To show this, we must show
that the possible traces s are the same for all three machines, and that after each trace s the

set of failures (sets of pairs of the formAp,

Considering the set of traces first, we note that for traces involving just the actldhs of

the behavior of all three machines is determined entirelylpy M, | M, since the other
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machines have not been activated yet. Thus the traces up to the tifipdbas idle are
identical for all three machines, and therefore all three machines can reach the same set of
AB states folV], | M,. We then note that by Lemma 29 that the set of sfi{BSreachable

from A|B are the same for all three machines (note that no observable actions have oc-
curred). We further note that afie} is activated, the behavior of the machine is determined
entirely byA'|B'| M, since the other machines are now idle. We therefore conclude that the

set of possible traces for all three machines are the same.

Now we turn to the consideration of failures. Gttbe a state that we have reached via the

sequence s. We consider three cases:

Case 1S' is a state aftdV] is activated. Then the same state is reachable in all three ma-
chines (established in the trace argument). Since the failures are determined entirely by sub-

sequent behavior, exactly the same failures are possible for all three machines.

Case 25' is a state aftd¥v], goes idle and befold is activated. By Lemma 28, the failures

of this state are subsumed by the union of the failures A\'{Bé states that are possible
whenM is activated. Furthermore, in order to re&hwe had to go through #B state

in whichM, went idle. The failures of th8|B state are also failures of the machine after s.

By Lemma 28, the failures of tHB state subsume the failures of Bestate. Lemma 28

also tells us that the failures of tA¢B state are the union of the failures of all of Ai{B'

states that can be reached fromAiB state. Lemma 29 tells us that the same sét|&Y

states are reachable in all three machines, and therefore the failures of all three machines
for this A|B state are the same. Since the failureS'aire subsumed by tdB state, we

conclude that its failures are also failures of the other two machines.
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Case 35' is a state befor}, goes idle. From the definition of failures, we see that the fail-
ures of the state are determined by the initials of the state. Now the initials are either actions
of M, or M. If the initial is an action d¥}, then it is a possible initial for all three machines
since the operation of the machines prior to idNgs identical for all three machines. If

the action is an action &, then there had to be AB state and aA'|B’ on the path from

S' to the state itV reached by the action. By Lemma 29 this same transition is possible in
the other machines as well, and therefore the same action is an initial of this state for all
three machines. Since the initialsSfire the same in all three cases, the failurés’ afe

the same.
Lemma 30 Unique Factorization of Actions

Here we show that factorization of an action into orthogonal actions belonging to the same
sort is unique up to =. Lef, andsS, be two sorts, witt5,[1S,. Leta,,a,b;,b,,Y be ac-
tions, witha,b, =y = a,b,, Atom(a,)US,, Atom(a,)LlS,, Atom(b,)LlS,, Atom(b,)US..

Then we have:
albl = y: a2b2 impliesa1:a2 andb1:b2

1: Since Act ,X,1) is an Abelian group (in particular, it is commutative and
associative), we can define a canonical form for each elg/fmbAct as a product
of primitive actions, each taken to some povggxgjxgsX.... If y; andy, are

both represented by the same canonical form, ireys.

2: Letus consider the canonical formyoBinceS,[1S,, each primitive action (except

for 1) belongs to eithe&, or S,. The actiorll belongs to both, and without loss of
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generality, we shall assume tHais a member of every action. Now for each
primitive action ofy (exceptl), if the action belongs t&,, the it must appear in
bothAtom(a,) andAtom(a,), since, by definition, it cannot be 8, and therefore
cannot be irAtom(b,) or Atom(b,). Since these are the only primitive actionajn
anda,, we haveAtom(a,) = Atom(a,). Similar arguments can be use to establish

thatAtom(b,) = Atom(b,).

3: Letus again consider the primitive actiony,dhis time considering the number of
times that each atom occurs. Siagb; =Y =a,b,, then if atomy; (g; #1) occurs
n times iny, it must occur n times ia;b, anda,b, as well. Ifg; LS, then
g;LJAtom(a,) andg;[JAtom(a,) and occurs im, anda, exactly n times. Similarly,

if g; S, theng;[JAtom(b,) andg;[JAtom(b,) and occurs i, andb, exactly n
times. Thus botla, anda, have the same canonical form, dndndb, have the

same canonical form. Thas = a, andb; = b.. Q.E.D.
Lemma 31 Unique Factorization of Agents
If E,0F,, Sort(E,)=Sort(E,), Sort(F,)=Sort(F,) then
E.|F.=E,|F, impliesE,=E, andF,=F,
Lemma 32 Interleaving Lemma

ALB impliesalTraces(A) andbTraces(B) iff [IcllCompg,b) cllTraces(A|B)
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In the forward direction this is just the definitionTfaces(A|B). In the reverse direction
we simply observe that becauAgIB the factorization o€ into orthogonal components is

Application of Theorems and Corollaries

B.2 Proof for Change of Scope Theorem

The proof of Theorem 5 is relatively simple. This theorem states:

M OM, M OMO
(M, M, | MO MOS=IM, | M;M,; MOIS

whereS = Sort(V)).

SinceM cannot interact with eithdy], or M, and the actions &}, are hidden, then the trac-

es of both configurations are the same.

Since all of the actions &f], are hidden, then the actionsMfare part of the refusal set for
all states of both configurations. Thus the fact Mais actually in a different state in the

two configurations during the time thlst andV] are operating does not affect the refusal

sets.

Since the traces are the same and the refusals are the same, the two configurations are fail-

ures equivalent.
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C Masking Union Properties and Visibility Proofs

C.1 Masking Union Properties

The proofs of the following properties follow simply from the definition of the masking
union, and are not given. In the following, the homograph relatid¢a®) is assumed to be

any arbitrary relation.

ldempotence:

AL A=A (78)
Left Identity:

O A=A (79)
Right Identity:

AL O=A (80)

Masking union is distributive over union:
A ®OC)=A{ BOAH © (81)

Union isnot distributiveover masking union. Consider the following expression, and an
element in A that has a homograph in C. The expression on the left would result in both
elements being in the result, while the expression on the right would only have the element

from A in the result.

AOBH cz@OBH (alC)
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The masking union isot commutative
AR BZBR A

The masking union is associative if and only if the homograph relation being used is tran-

sitive.

Subsumption: Given: XJ A

Al xX=A (82)

The converse is not true:

X H Az A
AL B=AL (xOB) (83)
Additional properties:

AL By OA=AOAH B)=Al B (84)
AR BR AR O=AH BH O=@AH BH C (85)
AOBH B=AOB (86)
AOBH (AOC)=@0OBH C (87)

Theorem 33 Computation of Direct Environments
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Given:

a anordered s&D of k declarations {¢ d,,... d.}
b aninitial direct environmemE
c anempty setD
We define a partial local declaration &€&;, as follows:
LD; ={d} OLD,
and the direct environment associated with each declaration:
DE; =LD; §, DE
Then we claim that
DE, =LD, H DE,
Proof by Induction on i:
Basis:i=1
1: DE,=LD;3 DE, Definition of DE;
Inductive Step:

1: DE;=LD;§ LD ;H DE, by inductive hypothesis
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2: DE;=LD,J DE, 1, Eq. (82) & Def'n oLD;

Q.E.D.
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