
Satisfying the Graphical Requirements of Visual Languages in the DV-Centro
Framework

Paul C. Brown
DataViews Corporation

47 Pleasant Street, Northampton, MA 01060
email: paul@dvcorp.com

Abstract

The graphical requirements for implementing a
visual language include defining the visual elements of
the language, the rules for connecting them together,
and the graphical relationships that must be maintained
once they are connected. The solutions for these
graphical requirements are intricate and inherently
difficult to implement. The resulting implementations
tend to be so specialized as to be applicable only to a
single visual language.

The DV-Centro Framework makes it possible to
implement sophisticated visual languages without having
to develop all of this machinery. In this paper we
examine the patterns of interaction between the
components of the DV-Centro Framework. We introduce
the Supervisor-Agent pattern as a means of
understanding these interactions. Through this pattern
we see how it is possible to assemble sophisticated
application-specific visual language elements from DV-
Centro library objects. We also see how it is possible to
provide the low-level user interface for interacting with
the visual language elements as library components.

1. Introduction

Designers of applications incorporating visual
languages have two difficult problems to solve: first, they
must meet the complex graphical requirements of the
visual language itself; and second, they must correlate the
diagrams of the visual language with the information that
those diagrams represent as well as maintain the
correlation as the diagrams are edited. This paper is the
first half of a two-part presentation of the DV-Centro
Framework for implementing applications employing
visual languages. In this paper we present a slightly
simplified version of the DV-Centro Framework and
discuss how it provides complete and reusable graphical
machinery for designing and implementing complex
visual languages. In [Br97], we complete the description

of the framework, showing how it provides the machinery
necessary to maintain the correlation between a diagram
and the information it represents, and how the presence
of this machinery enables standardized implementations
of application operations such as cut, copy, paste, and
delete.

The DV-Centro framework is based on ideas from a
number of different user interface frameworks, including
the Smalltalk Model-View-Controller (MVC) framework
[BMRSS96] [KP88] [Sh89], the Seeheim framework
[Gr85] [Gr86], InterViews [LCITV92], Unidraw [Vl90a]
[Vl90b], and the MFC Document-View Architecture
[Ms96]. While all of these earlier frameworks provide a
reasonable structure for implementing visual languages,
none of them promote the reuse of complex visual
language code in implementing new visual languages.
Since easily half of the total effort can go into designing
this portion of the system [MR92], this has a significant
impact on the cost of implementing visual languages.

In this paper we seek to explain how the DV-Centro
Framework makes it possible to reuse code (i.e. the DV-
Centro library) to implement new visual languages. We
will begin by defining the Supervisor-Agent Pattern, a
means of characterizing the relationships between
architectural components. This pattern makes clear the
design dependencies between the components. Next, we
will present the DV-Centro framework as if it were a
direct evolutionary descendent of the MVC framework.
We will use the Supervisor-Agent Pattern to clarify the
relationships between the MVC architectural components
and motivate its evolution into the DV-Centro
Framework. The resulting framework provides a
straightforward solution for satisfying the graphical
requirements of a visual language by reusing
standardized components (e.g. standardized data
structures and algorithms).

In this paper we will use the notation of the Unified
Modeling Language (UML) [BJR97].

1.1 Visual Language Graphical Requirements

The graphical requirements of a visual language
include defining the visual elements of the language and
the graphical relationships that must be maintained when
these elements are connected together. Algorithms must
be provided for graphically editing these elements (e.g.
moving, scaling, or rotating them or editing text) while
maintaining the graphical relationships (i.e. graphical
connections) between the elements. The editing
operations themselves are event driven, so appropriate
event interpretations for mouse and keyboard events must
be provided.

The solutions for these graphical requirements are
intricate and inherently difficult to implement. The data
structures are complex, containing information about
both visualization and connectivity. These data structures
are often further complicated by the use of parallel
hierarchies. The algorithms for maintaining graphical
relationships are not only complicated but they also tend
to be specialized to both the specific data structures being
managed and the specific geometries involved. The
consequence is that the solutions tend to be so
specialized that they apply to only a single visual
language. Each new visual language requires the re-
development of this machinery.

1.2 An Overview of Graphical Solutions in DV-
Centro

As we shall see in the remainder of the paper, the
DV-Centro Framework provides solutions that enable the
implementation of visual languages without having to
develop all of this machinery. It provides a rich
standardized three-tier data structure for defining the
logical elements (View Elements) of the Visual
Language. The top tier contains the View Elements
themselves. Each View Element is defined by one or
more second-tier building blocks (Image Elements)
whose visual appearance is defined by third-tier graphic
primitives (Graphic Elements). The Image Elements and
Graphic Elements are standard elements of the DV-
Centro library. Only the View Elements are customized
for the application.

Image Elements have connection regions (Pads) that
are defined as arbitrary geometries. Graphical
relationships between Pads are defined by Joints. Each
Joint specifies a particular relationship (e.g. graphical
containment of one pad within another) that must be
maintained between the Pads. The relationship is defined
independently of the geometries of the pads. Pads and
Joints are standard elements of the DV-Centro library.

DV-Centro provides algorithms for graphically
manipulating the Image Elements while maintaining the

graphical relationships. These algorithms are completely
independent of the visual appearance and graphical
relationships of the elements. They simply direct image
elements to perform transformations (e.g. translation,
scaling, rotation), and the image elements report back
what portion of the transformation is possible without
violating the constraints. In the process, the affected
image elements may generate transformation requests for
other image elements (through the pads and joints) in
order to maintain the graphical constraints. Only when all
constraints have been satisfied is the transformation
actually performed. DV-Centro also provides event
interpretation (the Image Controllers) for mouse and
keyboard events to implement in-place user-driven
graphical editing of both graphical shapes and text. The
Image Controllers are standard elements of the DV-
Centro library, and the algorithms are embodied in the
library’s Image Controllers, Image Elements, Pads and
Joints.

2. Pattern Analysis

We will begin by discussing the well-known
Observer Pattern and defining a refinement of this pattern
that we call the Supervisor-Agent Pattern. We examine
the design dependencies between the Supervisor and the
Agent in this new pattern and conclude that the
Supervisor cannot be used independently of the Agent.
We propose a design principle for encapsulating reusable
functionality in an Agent.

2.1 The Observer Pattern

The Observer Pattern (Figure 1) [GHJV95], which is
also referred to as the Publisher-Subscriber Pattern
[BMRSS96], characterizes an Observer as an object that
is notified by a Subject when changes in the Subject
occur. In this pattern the Subject knows nothing about the
Observer other than the Observer provides the interface
required for notifications. The Observer Pattern says
nothing at all about the Observer’s knowledge of the
Subject.

notifies
ObserverobservesSubject

Figure 1: The Observer Pattern

2.2 The Supervisor-Agent Pattern

In the course of developing the DV-Centro
Framework an interesting observation was made
concerning the appearance of the Observer Pattern in
earlier frameworks. In every case it was found that the
Observer, besides observing the Subject, also

manipulated the Subject, whether recovering information
from the Subject, making changes to the Subject, or both.

This pattern is distinct enough that we have given it
its own name: the Supervisor-Agent Pattern (Figure 2).
The Supervisor, a refinement of the Observer, is both an
observer and a manipulator of the Agent, which is a
refinement of the Subject. The Supervisor embodies the
policy for how and when the Agent is to be manipulated.
The Agent, in addition to being the subject of the
observation, provides functionality that is invoked by the
Supervisor. In contrast with the Observer Pattern, in
which no claim is made concerning the Observer’s
knowledge of the Subject, the Supervisor in the
Supervisor-Agent Pattern must obviously have
information about the Agent’s interface in order to carry
out its supervisory function.

notifies
SupervisorcontrolsAgent

Figure 2: The Supervisor-Agent Pattern

2.2.1 Design Dependencies

Since the Supervisor must manipulate the Agent, it is
clear that the design of the Supervisor is dependent upon
the design of the Agent. On the other hand, since the
Agent, as with the Subject in the Observer pattern, only
knows about the Supervisor’s notification interface, its
design is only dependent upon the design of the
notification interface. Given the assumption that the
notification interface is stable (i.e. is a standard), then it
is easy to see that the design of the Agent is independent
of the design of Supervisor.

2.2.2 Code Reuse Implications

The design of the Agent is only dependent upon the
notification interface of the Supervisor. Consequently,
the Agent can be used with any number of Supervisors,
and, in particular, with Supervisors that are designed
after the Agent is designed.

The design of the Supervisor, on the other hand, is
dependent upon the design of the Agent that it is intended
to work with. As a result, the Supervisor can only be used
in conjunction with that Agent - it has no utility without
its corresponding Agent.

Because the design of an Agent is independent of the
design of its Supervisor, an Agent that embodies a useful
unit of generic functionality is a good candidate for
membership in a class library. Later an application-
specific Supervisor can be designed to define the policy
for when and how the Agent’s functionality should be
used. This leads to the following design principle: If
functionality is to be reused, it should be embodied in
the Agent part of a Supervisor-Agent Pattern. Of course
these Agents can only be used with the specific
notification protocol that they are designed for. It is the
framework’s responsibility to define these protocols.

2.2.3 Examples of Reusable Agents

X-Toolkit Widgets and Microsoft Windows Controls
are both examples of reusable Agents in the Supervisor-
Agent Pattern. In both systems the Agent (Widget or
Control) provides reusable functionality in the form of a
building block for user interface design. In both systems
there is a simple notification mechanism for the Agent to
tell a Supervisor that a change has occurred, although the
identification of the “supervisor” is not well defined in
either system (i.e. notification occurs via callbacks in X-
windows and Windows Event Generation in Windows
Controls). In both systems the code that employs the
agents plays the Supervisor role and determines the
policies for when and where the Agent’s functionality
will be employed.

3. Analyzing The MVC Framework for
Supervisor-Agent Patterns

The Smalltalk Model-View-Controller (MVC)
framework (Figure 3) is one of the earliest frameworks
for the construction of user interfaces [BMRSS96]
[KP88] [Sh89]. For consistency with the remainder of the

notifies

controls

notifies
1..*

Controller

controls

controls
notifies

1..*1..*

ViewSubject

1..*

(Model)

Supervisor
-Agent
Patterns

User

Input

Output

Figure 3: Supervisor-Agent Patterns in the Model-View-Controller Framework

paper we have replaced the term Model with the term
Subject in the figure. The MVC framework provides a
separation of responsibilities into three kinds of
components: the Subject (Model), one or more Views,
and one or more Controllers.

The Subject (MVC Model) comprises the
information at the heart of the application. While this
information may be presented in one or more views, it is
kept in its pure informational form in the Subject,
abstracted away from the visual syntax of its presentation
in the View. The Subject plays the Agent role with
respect to the Views and Controllers, providing
notifications to the Views and Controllers when changes
occur (as a result of other View or Controller
manipulations of the Subject as described below) and
providing an interface for the Views and Controllers to
manipulate the information in the Subject.

The MVC View presents the visual language
diagrams. It creates the images for the user to observe,
and transforms the Subject’s representation of the
information to and from the diagram. There may be many
views associated with a single Subject, each showing a
representation of a subset of the Subject’s information.
The MVC View plays the Agent role with respect to the
Controller, providing an interface for it to manipulate the
View, and plays the Supervisor role with respect to the
Subject which it manipulates to keep its information
consistent with the diagram presented in the View.

The MVC Controller interprets external events
arising from user actions. It establishes the policy for
interpreting mouse and keyboard activity and utilizes the
interfaces of the Subject and View to implement
application functionality such as editing, storage and
retrieval. The MVC Controller plays the Supervisor role
with respect to both the Subject and the View. It
manipulates the View (to edit the view) and the Subject
(to save and restore) in response to external events.
These events usually arise from user actions, but in data-
driven applications, in which there is an active external
data source, these events may come from the external
data source as well..

3.1 Implications of the Supervisor-Agent
Patterns in the MVC Framework

In Figure 3 we have labeled the relationships
between the MVC components with the labels of the
Supervisor-Agent pattern. As the diagram shows, there
are three instances of the Supervisor-Agent Pattern in the
MVC framework. The Controller plays the Supervisor
role with respect to both the Subject and the View, while
the View plays the Supervisor role with respect to the
Subject. In terms of design dependencies, this means that
the design of the View depends upon the design of the

Subject, and the design of the Controller depends upon
the design of both the Subject and View. Consequently
the View cannot be used independently of the Subject,
nor can the Controller be used independently of either the
Subject or View.

Since the visual language is embedded in the MVC
View and MVC Controller, the consequence of the
design dependency is that the visual language cannot be
used in another application with a different Subject. In
addition, since the graphical data structures and
algorithms supporting the visual language are embedded
in the Controller and View, they are not usable in support
of other visual languages either. This means that each
visual language requires a new View and Controller,
largely written from scratch. These conclusions are
consistent with the MVC limitations concerning the
“intimate connection between view and controller” and
the “close coupling of views and controllers to a model”
noted by Buschmann et. al. in [BMRSS96].

DV-Centro solves this problem by dividing the
MVC View into two components, DV-Centro View (an
application-specific Supervisor) and a DV-Centro Image
(a standardized Agent), and a by dividing the MVC
Controller into DV-Centro View Controllers
(application-specific Supervisors) and DV-Centro Image
Controllers (standardized Agents).

4. The Simplified DV-Centro Framework

We now perform three decompositions on the MVC
framework to arrive at a simplified DV-Centro
framework: 1) we decompose the MVC View component
into the DV-Centro View component and the DV-Centro
Image component; 2) we further decompose the
information content of the View and Image into View
Elements and Image Elements; and 3) we decompose the
event interpretation of the MVC Controller into the DV-
Centro View Controller and the DV-Centro Image
Controllers. The resulting simplified DV-Centro
Framework is shown in Figure 4.

4.1 The Image

The Image is responsible for the visual presentation
of a diagram, defined as an assemblage of building
blocks known as Image Elements. The Image provides an
interface for creating Image Elements and for
establishing the spatial relationships that must be
maintained between these Image Elements1. It provides

1 The Image Elements and the spatial relationships

between them are the Spatial Relations Graph of Rekers
and Shürr [RS96]. The algorithms in the Image
correspond to the Constraint Solving described in this

interfaces for moving, scaling, and rotating these Image
Elements (in actuality, the interface allows an arbitrary
two-dimensional affine transformation to be applied to
the Image Elements), and for altering their visual
properties. Support for textual image elements, including
in-diagram editing of the text, is provided. The Image
also contains the algorithms necessary to maintain the
spatial relationships and the physical layout of the
diagram during the modification of the elements.

The Image plays the Agent role with respect to the
View, providing notifications to the View when graphical
or textual changes occur to existing Image Elements. The
Image provides an interface for the View to add, remove,
connect, and disconnect Image Elements. It notifies the
View when existing Image Elements are geometrically
modified or textually edited.

The Image also plays the Agent role with respect to
the Image Controllers (typically a graphical editing
controller and a text editing controller), whose function it
is to provide event interpretation during in-place
graphical and textual editing within a drawing. The

reference, and the visualizations of the Image Elements
correspond to the Physical Layout. In DV-Centro there is
no need for a Graphical Scanning component as the
Physical Layout cannot be edited directly in the DV-
Centro framework.

Image Controllers are the primary manipulators of
existing Image Elements. As the Image Controllers
manipulate the Image, the Image provides feedback as to
whether the manipulations are allowed by the current
graphical constraints.

4.1.1 Image Elements

Image Elements (Figure 5) are the building blocks
of diagrams. They are logical entities that are assemblies
of two types of components: Graphic Elements and Pads.
Graphic Elements define the visualization of the Image
Element. An arbitrary number of Graphic Elements, each

User
notifies

controls
1..*

notifies

ImageController

controls

notifies

ViewController

Events

controls
controlsSubject notifies

1..*

controlsnotifies Image
Output

View
1..*

notifiesViewElement
controls

ImageElement

0..*

Pad

0..*

0..*

Joint

0..*

Figure 4: Simplified DV-Centro Framework

Nominal Image Element

Graphic Elements

Image Element
Appearance Image Element

Structure

The “parent” pad (a point)

The “child” pad (a point)

The “parentEnd” pad (a point)

Nominal Image Element

Graphic Elements

The “childEnd” pad (a point)

Figure 5: Image Element Examples

with its own shape and visualization properties, can be
added to an Image Element to provide as sophisticated a
visualization as required. DV-Centro Graphic Elements
include scaleable text, bitmaps, and pixmaps as well as
geometrically defined graphics.

Pads are connection regions that are used to
establish graphical relationships between Image
Elements. Each Pad is simply a geometric shape, either a
point, a line, or one of a number of two-dimensional
shapes. An arbitrary number of Pads may be associated
with an Image Element. A graphical connection between
two Image Elements (a Joint) is just a graphical
relationship that must be maintained between two Pads.
Note that since the Pads have no inherent visualization,
the positioning of the Pads with respect to the Graphic
Elements is independent of the appearance of the Image
Element.

When Image Elements are manipulated (e.g. moved,
scaled, or rotated) all of their component pieces (Graphic
Elements and Pads) are manipulated uniformly. Thus the
relative positions the Graphic Elements and the Pads is
maintained during Image Element manipulation.

4.1.2 Image Element Connections: Graphical
Relationships

A graphical connection between two Image Elements
is really a graphical relationship that must be maintained
between a Pad on one Image Element and a Pad on the
other. These graphical relationships are established and
maintained through the use of an intermediary known as
a Joint. Each type of Joint defines a particular graphical
relationship that must be maintained between the Pads
(e.g. the geometry of one Pad must be contained within
the geometry of the other).

The key to the flexibility of Joints is that they are
able to enforce their constraints regardless of the
geometry of the Pads that they connect. However, there
are some conditions that must be met. For example, if the
Joint specifies that one pad is to be contained within
another, the pads must meet two requirements: 1) the
containing pad must be of the same or higher dimension
than the contained pad (it does not make a lot of sense to
contain a rectangle within a point); and 2) it is a
requirement of the algorithms used that the containing
pad must be convex in shape (if it is two-dimensional).

Each Image Element has two special Pads that
represent the “front” and “back” of the Image Element.
These pads are used to implement the containment of one
Image Element within another. For example, connecting
the back pad of a text Image Element to the front pad of a
rectangle Image Element with a containment Joint will
keep the text inside the rectangle even as the text is
edited.

Other Pads, usually referred to as “edge” pads can be
used to connect Paths (lines) to other Image Elements. If
the point pad at one end of a path is connected to the
edge pad of a rectangle, then the end of the path will
always remain connected to the edge of the rectangle. In
Figure 6 we see the result of connecting the “child” Pad
of John with the “parentEnd” pad of the Father relation,
the “parent” Pad of Tim with the “childEnd” pads of both
the Father and Mother relations, and the “child” Pad of
Mary connected to the “parentEnd” pad of the Mother
relation.

Joints not only define the graphical relationships
between the Pads (and hence the Image Elements that the
Pads belong to), but they also enforce these relationships.
When two Pads are connected via a Joint, the Joint
ensures that the relationship can be initially satisfied or
the connection operation is not allowed. Once the Pads
have been connected, if one Pad is manipulated (via its
Image Element), the Joint attempts to manipulate the
other Pad (and its Image Element) to maintain the
graphical relationship. If the second Pad is unable to
accommodate, the manipulation operation is not allowed.
Thus the Image Element - Pad - Joint structure forms a
distributed algorithm for maintaining graphical
relationships. In the example of Figure 6, if Tim were to
be moved, the “childEnd” ends of both the Father and
Mother relations would be moved, thus keeping the line
of both relations “attached” to Tim.

4.2 The View

The View is a manager of a diagram in a visual
language. Each instance of a View contains a single
diagram. The diagram comprises View Elements that are
the logical elements of the visual language. A connection
between two View Elements is implemented by
connecting two Pads from their associated Image
Elements. These connections provide the graphical
relationships between the logical elements of the visual
language2. The View provides the user interface for
creating and editing a diagram.

4.2.1 View Elements

View Elements are the logical elements of the visual
language. To form the actual language element, each
View Element creates an assemblage of one or more
Image Elements, configuring their Graphic Elements and
Pads to give the visualization and connection regions
required for this element of the language. In effect, the
View Element becomes the Supervisor of this collection

2 This is the Abstract Syntax Graph and its mapping
into the Spatial Relations Graph of Rekers and Shürr
[RS96].

of Image Elements. View Elements are notified by their
associated Image Elements when there is a modification
to the Image Element. In Figure 6, the Person view
element has the single Image Element shown in the
bottom of Figure 5, and the Father and Mother relations
each have the single Image Element shown in the top of
Figure 5 (for simplicity we have not shown the text for
either Image Element in Figure 5)

Each View Element in a View represents a particular
unit of information from the Subject known as a Subject
Element. For example, a Subject Element might represent
a person. Each View Element reflects the details of its
Subject Element’s information in the visual appearance
of the View Element, such as making the person’s name
appear in the drawing. More information concerning
Subject Elements can be found in [Br97].

Tim

John Mary

Father Mother

Figure 6: Diagram Example

4.2.2 Relating the Subject and View

The View embodies the policies for maintaining
consistency between a diagram and the information that it
represents. For completeness, we give a brief summary of
this topic here, but the management of the relationship
between the Subject and the diagram is the main topic of
[Br97].

The View plays the Supervisor role with respect to
the Subject. The View interprets notifications from the
Subject in terms of manipulations required to View
Elements, which in turn manipulate the Image Elements
to reflect the information change in the Subject.

The View also plays the Supervisor role with respect
to the Image. It is notified by the Image when an Image
Element is modified, and in turn calls a method
(recoverData or recoverGeometry, depending
upon the nature of the modification) on the View
Element that supervises the Image Element. Within these
methods lies the logic for retrieving information from the
Image Element and updating the associated Subject
Element information. In the example given above, if the
name “Tim” were selected and edited (using the Image
Controllers discussed later), the recoverData method

would be called on the Person View Element. This
method would take the new name and update its
associated Subject Element.

The View plays the Agent role with respect to the
View Controller. The View notifies the View Controller
when specific changes to the View occur (generally this
is just notifying the View Controller that the selection has
changed so that user interface state can be updated). It
presents an interface to the View Controller that allows
the View Controller to add, remove, connect and
disconnect View Elements consistent with the rules of the
visual language.

4.3 Controllers

If we were to leave the framework with a single
Controller per view (as in the MVC framework), this
Controller would have to provide the interpretation of all
user actions in the View. In particular, the single
Controller would have to handle the complex
interpretation of mouse and keyboard events associated
with the graphical and textual editing of the diagram.
DV-Centro divides these responsibilities between Image
Controllers and the View Controller, with the Image
Controllers interpreting the detailed mouse and keyboard
events associated with the graphical and textual editing of
the diagram.

4.3.1 View Controllers

Each View Controller is the manager of a single
View. It provides the user interface necessary to display
the View’s diagram, and it provides the interpretation of
events arising within that interface. The View Controller
in turn uses the Image Controllers to implement the
graphical and textual editing operations. Upon
recognizing an event that initiates a graphical or textual
editing operation (such as a mouse button 1) the View
Controller activates the appropriate Image Controllers (if
a text Image Element is selected, both the graphic and
text editing Image Controllers will be activated) and
passes subsequent keyboard and mouse events to the
Image Controllers for interpretation. The View
Controller plays the Supervisor role with respect to the
Image Controllers.

In [Br97] we see that the View Controller itself can
make use of subordinate View Controllers, and that
virtually all of the functionality necessary for visual
language editing can be provided in a reusable Agent
controller known as the Network Editor.

4.3.2 Image Controllers

Image Controllers are manipulators of Image
Elements. Each controller interprets specific mouse and

keyboard events and performs a particular kind of
manipulation of the Image Elements. The DV-Centro
Image Editor, for example, is an Image Controller that
interprets mouse buttons and mouse motion to provide
the ability to move and scale arbitrary Image Elements
(the Image Elements themselves maintain the graphical
constraints as this is happening). The DV-Centro Text
Editor is an Image Controller that interprets mouse
buttons and motion to provide text cursor placement and
text selection, and interprets keyboard input as editing
operations on the text.

Image Controllers play the Supervisor Role with
respect to the Image and Image Elements. They directly
manipulate the Image and Image Elements, particularly
with respect to their graphical position and appearance.

Image Controllers play the Agent Role with respect
to the View Controllers. They provide an interface for the
View Controllers to initiate Image Controller operations.
Once these operations are initiated, the View Controllers
pass events to the Image Controllers for interpretation.
Finally, the Image Controllers notify the View
Controllers when operations are completed or aborted.

Note that since the Image and Image Elements are
already standardized library elements, the Image
Controllers can also be added to the library and used in
the construction of applications.

5. Summary

The DV-Centro Framework, with its library of Image
Controllers, Image, Image Elements, Graphic Elements,
Pads, and Joints provides all of the graphical machinery
necessary to implement complex visual languages. In this
framework, the application-specific View Controller,
View, and View Elements determine how and when these
capabilities are employed. The Supervisor-Agent pattern
was used to identify the design dependencies and support
the contention that the Image Controller, Image, Image
Elements, Graphic Elements, Pads and Joints can truly be
used with a wide variety of View Controller, View and
View Elements without modification.

In explaining the DV-Centro Framework, we
introduced the Supervisor-Agent Pattern, a refinement of
the well-known Observer Pattern. An analysis of design
dependencies within this pattern led to a design principle
that generic functionality can be appropriately packaged
as an Agent in this pattern and reused with an arbitrary
number of Supervisors.

6. Bibliography

BMRSS96 F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stahl, Pattern-

Oriented Software Architecture: A System
of Patterns, Wiley, 1996

BJR97 G. Booch, I. Jacobson, and J. Rumbaugh,
The Unified Modeling Language for
Object-Oriented Development, Version 1.0,
Rational Software Corporation,
www.rational.com, (1997)

Br97 Brown, Paul C., “Correlating Diagrams
with Information in the Centro
Framework,” Technical Note 97-2,
DataViews Corporation, Northampton, MA
(1997)

GHJV95 E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software,
Addison Wesley, 1995

Gr85 Green, Mark, "Report on Dialogue
Specification Tools," in User Interface
Management Systems, Gunther E. Pfaff,
Editor, Springer-Verlag (1985)

Gr86 Green, Mark, "A Survey of Three Dialogue
Models," ACM Transactions on Graphics,
Vol. 5, No. 3 (1986)

KP88 Krasner, Glenn E., and Pope, Stephen T.,
"A Cookbook for Using the Model-View-
Controller User Interface Paradigm in
Smalltalk-80," Journal of Object-Oriented
Programming Vol. 1 No. 3 (1988)

LCITV92 M. Linton, P. Calder, J. Interrante, S. Tang,
and J. Vlissides, InterViews Reference
Manual, CSL, Stanford University, 3.1
Edition, 1992

MR92 Myers, Brad A., and Rosson, M. B.
"Survey on User Interface Programming,"
Proceedings SIGCHI’92: Human Factors
in Computing Systems, ACM (1992)

Ms96 Microsoft Foundation Classes Version 4.2,
Microsoft Corporation, 1996

RS96 J. Rekers and A. Schürr, “A graph based
framework for the implementation of visual
environments,” in Proceedings of the 1996
IEEE Symposium on Visual Languages,
IEEE Computer Society Press (1996)

Sh89 Shan, Yen-Ping, "An Event-Driven Model-
View-Controller Framework for Smalltalk,"
Proceedings of OOPSLA ‘89 (1989)

Vl90a Vlissides, John M., Generalized Graphical
Object Editing, A Dissertation Submitted
to the Department of Electrical Engineering
and the Committee on Graduate Studies,
Stanford University (1990)

Vl90b Vlissides, John M., “Unidraw - A
framework for building domain-specific
graphical editors,” ACM Transactions on
Information Systems, Vol. 8, No. 3, pp.
237-268, July 1990

