
Constructive Semantics

Paul C. Brown
GE Corporate Research and Development

Schenectady, New York USA

Constructive Semantics is an approach to programming language semantics that
treats a program as a constructive specification for an abstract state machine. This
abstract machine is composed of a set of smaller "well-behaved" machines operating
concurrently. The exact combination of machines is determined by the program, with
each programming language construct appearing in the program defining a portion of
the composition. The programming language itself specifies a number of primitive
machines that form the basic building blocks of programs. These machines represent
the basic operations and data types of the language. The resulting semantics is rela­
tively easy to understand, and its relationship to the original program is clear.

Constructive semantics treats many higher level programming language abstractions
also as specifications of state machines, where these machines serve as prototypes for
entire sets of machines. For example, a basic data type in a programming language is
modeled as a state machine, and each variable of the type is modeled as a copy of this
machine. Behavioral equiValence of machines provides a basis for modeling abstract
data types, in which behaviorally equivalent machines belong to the same abstract
data type. Behavioral equivalence also provides a basis for modeling type hierarchies
such as those found in object-oriented languages with multiple inheritance.

The formalism underlying constructive semantics is a process algebra known as the
Hybrid Calculus of Communicating Systems (HCCS), since it contains elements of
both Milner's Calculus of Communicating Systems (CCS) and Hoare's Communicat­
ing Sequential Processes (CSP). Behavioral equivalence in HCCS is based upon
Hoare's failures equivalence.

Constructive semantics provides straightforward semantic models for other important
aspects of programming languages, including concurrency (Ada tasks), elaboration
and visibility computations.

1.0 Introduction
The purpose of this paper is to show how process algebras can be used to give a com­
plete and understandable semantics for a programming language, including such
higher level language constructs as data types, program blocks, subprograms, and
Ada generics. The resulting semantics is complete in the sense that all of the features
of the programming language can be modeled in a straightforward mannerl. The sim­
ple relationship between the programming language constructs and the semantic
model elements allows an understanding of the semantics to directly aid in under­
standing the programming language being modeled.

We shall not attempt within the scope of this paper to give a complete model for even
a small programming language. Instead, we will lay the formal groundwork for the
model, and give examples of simplified semantics for several programming language

S. Purushothaman et al. (eds.), NAPAW 92
© British Computer Society 1993

178

constructs to indicate the manner in which a complete semantics can be given. A
more complete treatment of constructive semantics can be found in [5].

The following se4;:tion provides an intuitive introduction to constructive semantics by
giving a simple program fragment and a sketch of its corresponding semantic model.
The following two sections then describe the formal underpinnings of constructive
semantics, first by defining the process algebra HCCS (section 3), and then by
describing the classes of machines that we will use directly in our semantics and the
machine algebra that we will use for describing their composition to form larger
machines (section 4). Finally, we give formal expressions for simplified semantics of
some common programming language constructs.

2.0 An Overview of Constructive Semantics

The fundamental concept behind constructive semantics is that a program is simply
the specification of an abstract state machine, and all constructs of the programming
language in which the program is written relate, directly or indirectly, to the specifica­
tion of this machine or its component machines. The specification for the entire pro­
gram is, in turn, given as a composition of smaller state machine specifications. Each
of these machines may, in itself, be a composition of still smaller machines. Since the
programming language constructs themselves define the composition of machines
from smaller machines, the structure of the semantic model very closely parallels the
structure of the program.

Figure 1 shows some of the possible relationships between machines, using the nota­
tion of Rumbaugh et. al. [12]. Each machine is either a primitive machine or a com­
posite machine. Composite machines are comprised of one or more machines (of
either class), and, conversely, each machine is optionally a part of a composite
machine. Our program itself is just a composite machine.

It is permissible to have many copies of a program executing simultaneously. Each of
these copies is a state machine, separate and distinct from all of the others, yet sharing
the same specification. When we ask a machine to perform an action, we must be spe­
cific as to which machine we are making the request of. To reflect this in our model,
we give each action of a machine a "subscript" that uniquely identifies the machine
that the action is associated with. The program is thus the specification of a/amity of
structurally isomorphic machines (machines that are identical under a mapping
replacing the action subscripts with subscripts indicating the other machine). We will
call a family of structurally isomorphic machines a state type (for reasons that will
become apparent later).

1. The only exception that we are aware of is that the concept of a time interval, such
as the interval implicit in the Ada delay statement, is not directly definable, but
must be defined with reference to some abstract clock, each of whose "ticks" is
implies the passage of a certain time interval. This is a consequence of the underlying
process algebra (as are all process algebras that we are aware of) being based upon a
point ontology of time rather than an interval ontology. [13] contains an extensive
discussion and comparison of these ontological structures.

179

Machine t- component

state

actions

A
I I

Primitive Composite parent
Machine Machine ~

Figure 1 Composition of Machines

This concept of families of machines characterizes other programming language con­
structs as well. Subprograms and operators can be interpreted as families of state
machines: each call of the subprogram or operation indicates an interaction with a
different machine from the family. Data types are also families of machines, each of
which duplicates the data storage and behavior associated with the type. Each vari­
able belonging to a data type is associated with one member of the family of
machines defined by the data type.

2.1 Behavioral Equivalence
As might be sunnised, for any given behavior there are many models (machines or
combinations of machines) that will exhibit that behavior. In constructive semantics,
we use Hoare's failures equivalence [8] [2] to detennine when two machines ·are
equivalent. Under failures equivalence, machines are considered equivalent if the
sequences of actions that they will perform are the same and the actions that they can
possibly refuse after a sequence of actions are also the same.

Since implementations of programs (as opposed to their abstract semantics) can also
be modeled with process algebras, behavioral equivalence provides us with a formal
means of comparing actual implementations of programs with the abstract semantics.
Furthermore, since this behavioral equivalence is a congruence relation in the model,
equivalence of two machines can be established by establishing that the component
pieces of the two machines are pair-wise equivalent.

2.2 Types

There are at least three concepts frequently associated with the term type in program­
ming languages: a set of values2, a behavioral (interface) specification, or an imple­
mentation specification. In constructive semantics, these three concepts are not
inconsistent, and are in fact closely related to one another. To see this, we must first
realize that in a state machine model, there is no way to store a value directly. Instead,
the value must be encoded as the state of some state machine, with each state of this

2. Or a representative of the set, as is the case in domain semantics

180

machine representing a different value. Reading and writing values then correspond
to actions of the state machine in which the state of the machine is altered (writing) or
its present state is revealed without altering the state (reading). Thus we see that val­
ues, per se, do not exist in our model. We must instead talk in terms of a machine
capable of encoding these values. In particular, in order to model the storage or pass­
ing of values, we must explicitly model the machine that is used to hold the values.
This explicit handling of value storage in the semantics makes clear the distinctions
between the different parameter passing semantics used in subprograms, and provides
a basis upon which to decide whether they are equivalent for a particular subprogram.

When a machine is interacting with a machine encoding values (we will call these
machines value machines), we are not directly observing the state of the machine
(i.e. the encoding of the value being represented): we are only able to infer the
intended value from the actions to which the value machine will respond. We con­
clude that the only characteristic we can observe about a machine is its behavior: its
interactions with other machines. Returning to our discussion concerning a type as a
set of values, it is the behavior of the machine that we use to store that values rather
than the values themselves that we find in constructive semantics: values have thus
been reduced to a special case of a type as a behavioral specification. We define an
abstract type to be a set of actions and a family of machines that all exhibit the same
behavior with respect to the actions belonging to the abstract type. Clearly more than
one state type may be included in a given abstract type, and is relatively straightfor­
ward to show that every state type also defines an abstract type. Similarly, we define a
state type to be a set of machines and an isomorphism between the actions of the
machines. Thus all of the machines in a state type are identical up to the relabeling
operation.

In constructive semantics, a data type declaration in the language is usually taken to
be both the definition of an abstract type (a behavioral specification) and a state type
belonging to that abstract type (an implementation) capable of encoding the values of
the type. For built-in data types in the language, the state type and abstract type are
taken to be part of the language specification itself. For user-defined types, the formal
semantics of the language defines how these types are defined in terms of previously
defined abstract and state types.

Abstract types provide a formal basis for defining type hierarchies based upon behav­
ioral equivalence, in which the descendent types are required to exhibit the full
abstract behavior of the parent3. This allows the implementation of the individual
types to be different, and allows their functionality to be extended (new actions
added) beyond that of the parent as long as the behavior with respect to the parent's
actions is preserved. Abstract types even provide a model for multiple inheritance. In
Figure 2 child type c performs all "a" actions and "b" actions as well as its own "e"
actions. If the "a" actions and "b" actions are disjoint (a condition that we require of
all unrelated types for both technical and philosophical reasons), the child type c will
be of abstract type A (behaviorally equivalent to A when interaction is restricted to

3. These are frequently referred to as "is-a" type hierarchies in object oriented lan­
guages.

181

"a" actions) and will also be of abstract type B (behaviorally equivalent to B when
interaction is restricted to "b" actions).

Abstract Abstract
Type A TypeB

"a" actions "b" actions

A A

Child Type
C

"c" actions

Figure 2 Multiple Inheritance

In constructive semantics, we will define families of machines by specifying a proto­
type machine for the family. The other machines in the family can then be generated
by changing the subscripts of the actions as appropriate. This holds for abstract types
as well as state types.

2.3 Classes of Machines
There are three classes of primitive machines that occur in constructive semantics.
The first of these is the class of value machines, which we have already encountered.
Value machines are passive (by construction): they never ask other machines to per­
form actions. Thus value machines cannot interact.
Since value machines never request actions of other machines, and therefore cannot
interact, we must have at least one other class of machines that can request actions of
other machines. In fact, we have two classes of these machines. The first we call
interaction machines. Generally speaking, interaction machines do not retain
encoded values in their internal state: instead, they act as intermediaries between
other machines that can encode values. These are the machines that define the basic
operations and relations: assignment, equality, arithmetic operations, etc.

The third class of machine correlates the activation and idling (starting and stopping)
of other machines (we require that each machine has a unique activate and idle
action). This class of machines we will call activation machines.

2.4 An Example
Let us consider the following fragment as if it were a complete program, and examine
its possible composition from smaller machines. The data type integer corresponds
to a state type of value machines, and the machines representing the variables a, b

and c are members of this state type. We will use va. Vb, and Vc to represent these

182

three machines. In addition, we will use a fourth temporary variable vt to hold the
result of the addition prior to its assignment to the variable c.

declare
a integer:= 2;
b : integer := 3;
c : integer;

begin
c .- a + b;

end;

Example 1 Simple Program Fragment

. Constants are also represented by value machines (variants of the integer value
machine), and we will use C2 and C3 to represent the machines corresponding to the
integer fonstants 2 and 3 respectively. The operations of integer assignment and addi­
tion correspond to families of interaction machines. We will designate individual
interaction machines with a subscript, and use a superscript notation to informally
indicate the role that the machine plays in the program. For example, the first assign­
ment machine (the one that assigns the constant 2 to a) would be designated by
-=I~a , and similarly the other assignment machines are designated by =~~b and
=~~c . The addition machine is designated by +a.b~t (we omit the subscript here
since there is only one addition machine involved).

Figure 3 shows the relationship between these machines using a reduced Petri net
notation. The tokens in this Petri net are the individual machines that we have been
discussing. Arcs originating at the heavy black bars indicate the activation of
machines (the introduction of that machine or token into the network), and the labels
indicate which machine is being activated. Arcs terminating at the heavy black bars
indicate the idling of machines (the removal of machines or tokens from the net­
work). The heavy black bars are, themselves, graphic representations of activation
machines. In all of the other transitions, the tokens retain their individual identities as
they pass through the transition.4

In this diagram, we see that the three value machines V~ Vb, and vc' the two constant
machines C2 and C3, and the first assignment machine =1 ~a are all activated in paral­
lel. When the first assignment machine is idled, the second assignment machine
=~~b is activated. When the second assignment machine is idled, both the temporary
value machine vt and the addition machine +a,b~t are activated The idling of the
addition machine activates the final assignment machine =~~ , and finally the four
value machines, two constant machines and the final assignment machine become
idle simultaneously.

While this graphical notation is quite descriptive of the relationships between the
machines, it is somewhat cumbersome. Consequently, we will use an algebraic nota­
tion that also describes the machine relationships. The expression for the above
example is:

4. This extension to Petri nets in which token identity is preserved through the transi­
tion is due to Eaker [6][7]

183

Figure 3 Reduced Petri Net of Example 1

(V I V I V I C I C 1_2~a ._34 ·(v I+a,b~t._t~c » abc 2 3 -1 ,-2 ,t ,-3 (1)

Here the vertical bars, angle brackets and semicolons represent specific kinds of acti­
vation machines. The vertical bars I indicates parallel composition, with the angle
brackets (•••) indicate that the parallel machines within the brackets are both acti­
vated and idled simultaneously. The semicolon indicates that the idling of the

machine before the semicolon is associated with the activation of the machine after
the semicolon (we adopt the convention that the semicolon binds more tightly than
the parallel composition bar, and thus avoid the need for parentheses to explicitly
group terms). Note, however, that in this notation there is no explicit indication of

184

which machines interact with which other machines. This information is contained in
the definitions of the machines themselves, as we shall see in later sections.

Ada generics and e++ templates are modeled as partial specifications of state
machines. These partial specifications contain variables corresponding to the formal
parameters of the generic or template. The expected values for these variables are
state machines. An instantiation of the generic or template is modeled as the state
machine defined by replacing each variable with the state machine corresponding to
the actual parameter (usually the prototype machine associated with a type or subpro­
gram).

3.0 HCCS
We now proceed to give the formal underpinnings to constructive semantics. HeeS is
the process algebra upon which constructive semantics is based, and is a hybrid of
work done by Milner, Hoare and Brookes. The formal basis for this model is the syn­
chronization tree semantics of Brookes [2].

The starting point for the semantic model is Milner's ees [9][10], with the following
modifications:

1 Instead of using ees' s flat set of actions, we use the abelian group of actions as
used in Milner's sees and ASeeS.

2 Milner's + operator is replaced by the similar 0 operation used by Hoare and de­
fmed in terms of Milner's synchronization trees by Brookes [2]. We will use E9 to
represent this operation. The use of the Hoare operator makes failures equivalence
a congruence relation.

3 We alter the defmition of Milner's I operation to allow n-way synchronization be­
tween agents, where ees only allows binary synchronization. We provide a for­
mal semantics for this new operation using Brookes' synchronization tree seman­
tics.

4 We use Brookes' failures equivalence rather than Milner's observational equiva­
lence. Milner's observational equivalence makes non-observable distinctions be­
tween machines, while Brookes' failures equivalence only distinguishes between
machines if the machines differ in observable behavior. The use of failures equiv­
alence allows the proof of our parallelization theorem, which is not true using ob­
servational equivalence.

3.1 Actions
We first define Act the set of actions. Actions can be thought of as the labels on the
arcs of state machines. Actions are part of an abelian group (Act, x, 1,-) freely gen­
erated by a set of positive primitive actions = {a,b,c, ... }, a unique identity action 1, a
binary operator x and a unary inverse operator -. The inverse of a positive primitive
action a is the negative primitive action a (and vice-versa). We shall refer to the union
of the positive and negative primitive actions and the identity action as the set of prim­
itives = { ... ,c,D,a,1,a,b,c, ... }.

185

In our subsequent semantics, we shall see that the operator x is used as a parallel com­
position operator: when we write axb, we mean that the actions a and b occur simul­
taneously. In writing actions, we shall frequently omit the parallel composition opera­
tor x, writing st to represent s x t.

To facilitate the comparison of actions, we define Primitivei.. a) to be the set of primitive
actions that an action a is comprised of. For example, if a and b are primitive actions,
then Prirnitivei.. ab) = {a, b}. We note that this is a definition based on the syntactic
structure of the action as a minimum length string of primitive actions. In particular,
we do not want to infer that {a, a}~Primitivei..x) just because aa=l and lx = x for all
actions x E Act. However, we will always include the element 1 in the set of actions
generated by Primitivei..a). By extension, if A is a set of actions, we define Primitives(A)
= u aeA Primitives(a).

From time to time we will wish to define the set of actions a + that can be constructed
from the primitive actions Primitives(a) of an action a. Formally, we define a + to be the
submonoid of Act freely generated by Primitivei..a) for any a E Act.5 As before, we
extend this to sets of actions, defining A+ to be the submonoid of Ac t freely generated
by Primitives(A) for any AQct. In a similar manner, we define the subgroup of actions
a* that can be constructed from the primitive actions Primitives(a) of an action a. For­
mally, we define a* to be the subgroup of Act freely generated by Prirnitives(a) for any
a E Act.We extend this to sets of actions, defining A* to be the subgroup of Act freely
generated by Prirnitives(A) for any AQct.

3.2 Agents and Agent Expressions: Syntactic State Machine
Specifications

We now proceed to give a syntax for the specification of a state machine. We begin by
defining E, the set of agent expressions. Agent expressions are syntactic representa­
tions of the states of state machines. Agent expressions may contain variables (whose
values will be other agent expressions), in which case the agent expression is a tem­
plate for a state that will be fully specified when the values of the variables appearing
in the agent expression are given. An agent is an agent expression that contains no
variables. An agent can be viewed as a fully specified state of a state machine. As we
shall see, an agent, in conjunction with a collection of constant definitions and the
HCCS inference rules relating one agent expression (state) to another, provides a com­
plete specification of a state machine.

Returning to the syntactic specification of agent expressions, let 1{ = {O,l,A,B,C, ... } be
a set of agent constants, and X= {X,Y,Z, ... } be a set of agent variables. Then we de­
fine E, the set of agent expressions, to be the set generated by the following rules:

-1{UXCE

'if E,F E E, a EAct, AQct:

Action:

5. Since a monoid does not include the inverse operator, the only primitives in A+ are
those that explicitly appear in Primitives(A).

186

a.EE E

where "." is a binary operator of type ActXE-7E. Infonnally, this operator is used to
provide the semantics of sequence: the agent a.E (under appropriate circumstances)
perfonns the action a and then behaves like E.

Product:

EIFE E

where "I" is a binary operator of type EXE-7 E. Infonnally, this operator is used to pro­
vide the semantics of parallel composition: ElF means that both E and F are operating
in parallel.

Summation:

tEjE E
jeI

where" t" is an n-ary operator of type EXEX ... XE-7E. Infonnally, this operator is
used to prfflide the semantics of detenninistic choice between the behaviors of the var­
ious Ej in the tenn. In the special case of a summation involving two machines, we
shall write the summation as E$F.

It is important to note that the operation being defined here is not Milner's summation
operator, but a generalization to an arbitrary number of tenns of Hoare's [] operator.
The behavior of the Milner and Hoare operators is the same for observable actions, but
different for the non-observable action 1.

Restriction:

EtA E E

where "t" is a binary operator of type E><A~E, where A is a subset of Act. Infonnally,
this is a restriction operator, with the semantics that EtA restricts the visible (available)
actions of E to those present in A* (i.e. hides all actions of E that are not in A*).

From this operator we define a derived binary operator \:EXA~Eas follows:

E\A == E t {aE Act 1 Primitive(a) n Primitive(A*) = 1}

This operator hides any actions any of whose primitive actions are also primitive ac­
tions of A*.

Morphism:

E[<I>] E E

where [] is a binary operator of type EX(Act~Act)~E, and <I>:Act~Act is any
mapping from Act to Act such that <I>(a) = <I>(a) and <1>(1) = 1. Infonnally, [] is a re­
labeling operation such that E[<I>] is the agent expression that results from replacing
each action of E with the result of applying the mapping <I> to that action.

Constant Definitions:

To allow recursive definitions, we use systems of equations involving constants, where
a constant is simply a variable whose value has been fixed to be a particular agent ex-

187

pression. Recursive definitions can then be achieved by the appropriate use of con­
stants on the right hand side. Each constant is defined to be an agent expression E:

A=E

3.3 Semantics: Labeled Transition Systems

We now proceed to give semantics to agent expressions by defining labeled transition
systems. Informally, a labeled transition system is a state machine in which the agent
expressions are the "states" of the machines, and the transitions between agent expres­
sions are labeled with actions, hence the term labeled transition system. Formally, a
labeled transition system is a triple:

a
(E, Act, {~ : a EAct})

where E is a set of agent expressions, Ac t is a set of actions, and each ~ is a relation
between agent expressions.

In this system, we have the following inference rules6

Action:

a
a.E ~ E

(2)

This rule states that the agent expression a.E becomes the agent E after it has per­
formed the action a.

Summation:

~ E- ~ E',
iEI I J

(jE I,a;tl)
(3)

This rule states that if any element Ej of the summation can make a transition to E'j

by performing the observable action a, then the entire summation can also perform the
a action and then behave like E'j' In other words, by performing this observable action,
all of the other alternative choices have been discarded.

(jE I)
(4)

This.second rule deals with the case in which the action is the non-observable action
1. In this case, the individual component of the summation may make this non-observ­
able transition, but the other choices in the summation are not discarded. The notation
[Ef lEi 1 simply indicates that Ei has been replaced by Ef .

6. While they are given here as axioms, these axioms are in fact derivable from syn­
chronization tree semantics [5]

188

This pair of rules has the effect of preventing a non-observable transition of one ele­
ment of a summation from eliminating the other possibilities in the summation. This
is distinctly different from Milner's "+" semantics7, which uses the first rule only and
places no restriction on the observability of the action. Using Milner's semantics
would prevent failures equivalence from being a congruence relation, which is a re­
quirement of our model8.

Product:

E ~ E'
a

ElF ~E'IF (5)

ElF ~ ElF' (6)

These two rules state that if one member of a parallel composition can make a transi­
tion on the action a, then that member can also make the transition as part of a parallel
composition if the parallel composition performs the action a.

b
F ~ F'

EIF~ E'IF' (7)

This rule says that both members of a parallel composition may make transitions si­
multaneously, provided that the appropriate actions occur simultaneously.

Restriction:

E ~ E' (aES)

(8)

Here we have the semantics of restricting the actions that a machine may perform to
those present in a particular set S. If E makes a transition to E' with the action a, and
a is a member of s, then Et s may also make a transition to E't s with the action a.
Note that the absence of any other rule regarding restriction means that if a is not in
s, no transition is possible. We also note that the non-observable action 1 is always a
member of s.

Morphism:

7. [9] p. 271
8. Milner's observational equivalence is also not a congruence relation in ccs.1t is
conjectured that the use of Hoare's D operator (which we are using here as our +
operator) in lieu of Milner's + would make observational equivalence a congruence
relation in the modified CCS system.

189

f(a)
E[~] ~ E' [~] (9)

This rule gives us the semantics of relabeling machines. Recall that ~ is a homomor­
phism from actions to actions. The semantics are that if E can make a transition to E'
with the action a, then the relabeled version of E, E[~], can make a transition to the
relabeled version of E', E[~]', with the mapped action ~(a).

Constants:

(10)

The semantics of constant declarations is that if the constant C is defined to be the ex­
pression E, then any transition that E can make is also a transition of c.

4.0 Machines
In constructive semantics, a machine is a labeled transition system and an initial state
of that system. The well-behaved machines used in constructive semantics are a
restricted subset of the machines definable in HCCS. We now proceed to define the
restrictions that we will place upon the machines, and then define the machine algebra
in which machines may be composed in various serial/parallel combinations while
preserving these well-behaved properties. Several theorems in machine algebra
describe orthogonality (independence) conditions under which the serial/parallel rela­
tionships between machines in a composition may be altered, yielding behaviorally
equivalent compositions.

4.1 Positive Primitive Actions Appear on Exactly One Machine

We now proceed to give an interpretation of actions. Positive actions represent actions
that a machine can take. Since we wish such actions to be unique to a machine, we
shall require that a positive primitive action may appear as a transition label on ex­
actly one machine (although it may label any number of arcs on that machine). In con­
trast, the corresponding negative primitive action (a request made by another machine
for this action) may appear on any number of machines. We will refer to the one ma­
chine on which a positive action appears as the defining machine of that action.

4.2 Well-Behaved Machines

We define a well-behaved machine to be a maehipe that has exactly one observable
activate action and whose initial action is always that unique activate action, and has
exactly one observable idle action and if this idle action occurs, the only observable
action that may follow is the activate action9•

9. Note that this does not imply that the machine must respond to the idle action in
every state. This is similar to Milner's well-terminating property [10] p. 173

190

We note that ";" and "{}" both preserve the well-behaved property:

Lemmal

Let Mbe the set of well-behaved machines. Then:

HI, Hz eM::}HI;HzeM

HI' Hz,Hne M::} {HII Hzl...IHn}e M

We adopt the convention that the ";" operator binds more tightly than (takes prece­
dence over) the I operator, and that {} binds more tightly than either.

4.3 Machine Algebra

Our machine algebra is then the system (9.1; =, ;, 1,0), where Mis the set of well-be­
haved machines, = is behavioral equivalence, and ;, I, and 0 are as defined above.

4.3.1 Parallelization Theorem

We wish to consider the circumstances under which the sequencing of machines in a
composition may be altered. Consider the following abstracted model of a program or
subprogram:

(Va I Vb I ~; Hq ; Hr ; Hs}\s

where s = SartI 0 ~ U Sort~ U Sort~ U Sart~ U Sort~) U Sort(Mq)u Soft~} U

Sort~), Va and Vb are local variables of the program, ~ is a machine that copies actual
parameter values into the local variables, Hq and Hr are machines that do the actual
work of the subprogram by modifying the local variables, and Hs is a machine that cop­
ies the final values out into lheir target destinations. The restriction \s simply says that
the internal workings of the program are not visible from outside the program (the
variables are hidden and the machines that do the work cannot communicate with any
machines outside of the program). The sequencing~; Hq ; Hr ; Hs says that the actual
parameter values are copied in, then Hq does its work, then Hr does its work, and finally
Hs copies the results back out of the program.

Now it seems intuitive that if 1) the variables cannot interact with each other, ansi 2)
the machines that do the work (Hq and Hr) cannot interact with each other, and 3) each
working machine can only interact with one ofthe variables, then it should not maller
which order Hq and Hr do their work. In fact, they could even operate in parallel! This
is exactly what the parallelization theorem establishes:

Theorem 2 Parallelization Theorem

Ha ..L Hb, Ha..L Hp ~ ..L Hq, Hq ..L ~

{Ha I ~ I ~ ; Hq ; Hr ; Hs}\s =
{Ha I Hb I ~ ;{Hq I Hr}; Hs}\s =

{Ha I Hb I ~ ; Hr ; Hq ; Hs}\s

to. The sort of a machine is the set of primitive actions that appear on the machine.
The inverse of the sort is the set of inverses of the actions appearing in the sort.

191

This is a valuable result, since it shows how to take a serial program and convert it
into an equivalent parallel program with no analysis beyond simply determining the
orthogonality (independence) of the component parts of the program. The proof of
this theorem is in [5].

4.3.2 Change ojScope Theorem

Somewhat similar to the parallelization problem is the change of scope theorem. Con­
sider the following configuration of machines:

(Ma ;(Mb I vx); Mc)\S

where S = Sort{vx). The situation we are modeling here is one in which Vx is a local
variable used by Mb only. If Ma and Me cannot interact with v x and v x is hidden from
the outside, then it seems reasonable that the lifetime of v x could be extended, yield­
ing a behaviorally equivalent configuration:

(vx I Ma ;Mb; MJ\s

This leads to the following theorem:

Theorem 3 Change of Scope Theorem

Ma ..l Mx, Me ..l Mx~

(Ma ;(Mb I Mx); Mc)\s=:(Mx I Ma ;Mb; Me)\S

where s = Sort{Mx). A proof of this theorem can be foundin [5].

5.0 Semantics
The intent of constructive semantics is to provide an interpretation of a program as the
specification for an abstract state machine. We are now in a position to show how the
constructive semantics of a programming language can be given using the results of
the earlier sections. The style of this semantics will be denotational, showing how each
construct in the language can be interpreted as a machine that is defined by the com­
position of the denotations of its component parts.

A programming language defines a number of basic data types and operations as given
elements of the language. We assume that the machines denoted by these data types
and operations are given as part of the formal semantics of the language.

We will take some example from the Ada programming language as the basis for
showing how a constructive semantics for a language can be given. This subset in­
cludes many of the language features of Ada, including declarative blocks, composite
types and exception handling. Packages and task's have been omitted because they dif­
fer little from declarative blocks in their semantics except for their extremely complex
visibility computation rules, which are analyzed and modeled in [4].

In giving the semantics for each construct, we will not provide complete Ada seman­
tics, but rather simplified semantics that highlight the strategy used in modeling each
particular language construct. This is done because modeling the complex visibility
rules of Ada would tend to divert attention away from the basic approach.

192

5.1 Declarations and References
In the previous sections we have laid the groundwork for modeling the semantics of a
programming language in terms of machines. Each identifier in a program corresponds
to a machine. We define an environment 'E:UeXMto be a relation between identifiers
and machines. We note that this environment is suitable for mapping identifiers into
both machine instances and types if we use the "prototype machine" approach to de­
fining machine types.

A declaration in a program usually results in both the definition of a machine and its
entry in an environment relation in association with an identifier11 . A reference is an
occurrence of an identifier that must be associated with a machine through an environ­
ment relation l2. Each occurrence of an identifier in a program is either part of a dec­
laration or it is part of a reference. Consider the program in Example 2. In this exam­
ple, we observe a single explicit declaration 13 of a variable named a, and a number of
references: one to integer in the declaration itself; another to a in the assignment
statement; and a third to the literal 1 in the assignment statement. The symbol : = is a
reference to an assignment operator.

X: declare
a : integer;

begin
a declaration of "a"

a := 1; -- a reference to the "a"
end X;

Example 2 Declarations and References

Taking this perspective of a program, one interesting problem is the determination of
which machine a particular reference actually refers to. This problem can, in itself, be
divided into two sub-problems: one is the determination of which machines are visible
(available) at a given point in the program (we call this set of visible machines and
their associated identifiers the direct environment); the other is the determination of
which of these is the one that is actually being referred to. In [4] we have investigated
the computation of visibility, and at present have left the formalization of how a refer­
ence is selected for future work.

5.2 Elaboration: From Programs to Machines
If a program is the specification of a state machine, somewhere along the line the pro­
gram must be converted into the machine itself. While one might be initially tempted
to say that this is the role of the compiler, a compiler in simply generates the initial
state of a machine, namely the computer in which the program will be executed. In
constructive semantics, we wish to generate the specification of an abstract machine
whose behavior is the "meaning" of the program. Of course, to be correct, the behavior

11. Note that this approach allows more than one identifier to be associated with the
same machine. Declarations of aliases do not define new machines, but simply asso­
ciate an existing machine with a new identifier.
12. There may be more than one entry in the relation with the same identifier
13. There is also an implicit declaration of the block X.

193

of the computer with the compiler generated initial state must be equivalent to the be­
havior of this abstract machine.

Converting a program into a state machine is not necessarily a one step process. The
obvious counter-example is the interpreter, which does the conversion piecemeal. But
even a compiled program may not be convertible into a complete state machine at load
time. For example, some Ada data type declarations (definitions of machine types) are
allowed to depend upon values computed previously in the program. Thus the ma­
chines defined by these type declarations are not even fully defined until part of the
program has been executed.

In what follows, we shall have occasion to refer to the process of converting a program
into a machine. For this purpose, we borrow a term from Ada and call this process
elaboration. Formally, elaboration is a mapping from a syntactic language term, a lo­
cal declaration set, a direct environment and a type structure to a machine:

The first term is the language expression whose meaning is being determined. The sec­
ond term is an environment that is to contain local declarations (typically, this environ­
ment is modified in the course of elaboration). The third term is an environment that
contains machines that-have been defined elsewhere that may be used in the course of
performing the elaboration.The fourth term is a type structure, which may contain
some type information initially and may also be added to during the course of elabo­
ration.

5.3 Variables of a Simple Type

A variable belonging to a simple data type is modeled as a value machine belonging
to the state type whose prototype machine is associated with the data type. The result
of elaboration is a new machine "cloned" from the prototype machine of the data type.

E([variablename: typenamei] , LD, DE, '1)
=M=New(MT)

where

MT = Ref(ide,DE)

Here New is an operation that takes a prototype machine and gets an unused member
of the state type, and Ref is an operation that locates a machine in an environment by
name.

The elaboration has side effects adding the new declaration to the set of local declara­
tions and recording the type relationship in the State'JYpe relation:

LD = LD ,U {(variablename, M)}

State'T'ype = Statt'Type U (M,MT)

where State'JYpe is a relation that records which state type a machine belongs to.

194

5.4 Subprogram Calls and Expression Evaluation

The semantics that we give for subprogram calls encompasses the invocation for both
operators and subprograms. This treabnent of operators as pre-defined subprograms
allows the modeling of languages in which user-defined versions of these operators
may be declared in a program. The newly defined operator affects the visibility of the
original operator according to the visibility rules of the language.

We give several alternative representative formulations for calling two argument sub­
programs, each of which can be readily generalized to an arbitrary number of argu­
ments. In defining these expressions, we will frequently need to know the syntactic
name of the operation at the root of an expression. We define the syntactic function
'/(pot(expression) that returns this identifier.

The simplest form of subprogram call assumes that the arguments are simply referenc­
es to existing machines (thus requiring no elaboration of the arguments) and further
assumes that the arguments are of the correct type. We arrive at a relatively simple se­
mantic for a subprogram call in which the prototype machine defining the subprogram
is located and a new member of its associated state type is returned:

E([subprogramName «argumentl>, <argument2»;], LD, DE, '1)

= New(Ref(subprogramName, DE))[Ml/Pl,Mz/P2])

whereMl = Ref('/(pot«argumentl»)'~ = Ref('/(pot(<argument2> », and [Ml!Pl>M2!
Pi] is a minor abuse of our morphism notation indicating that the actions of the formal
parameter PI are mapped to the actions of actual parameter MI, and similarly for P2
and M2. This assumes, of course, that PI and MI are of the same type, and similarly P2
and M2 are of the same type.

We now extend the semantics to include a modest amount of type checking. In this
scheme, type information propagates only in one direction: upwards from actual argu­
ments to functions.

E([subprogramName «argumentl>' <argument2»;], LD, DE, '1)

= New(TypRef(subprogramName, DE,
{RetSig(Ml)xRetSig(~)} »[M1/P1 .M2/P2]

Here RetSig uses the type structure no locate the return type signature of the indicat­
ed machine, which is, itself, a prototype machine representing some data type, and
TypRef uses the same type structure to type qualify candidate machines found in the
environment.

The semantics given for the previous two examples will work correctly if the argument
is a variable, but if the argument is itself a subprogram reference (a function call), then
the reference to the root of the argument will return the prototype machine of the sub­
program, and we must then get a new member of its state type. We do this by elabo­
rating the argument itself as part of the elaboration of the subprogram call. We thus get
(ignoring type checking again):

E([subprogramName «argument1>' <argument2» i:n ,LD, DE, '1)

= (New(Ref(subprograrnName, DE»[X1/P1 ~P2]1

if Type(X1) =xt then E([<argumentt>:n, LD, DE, '1) else 0 I

if Type(x2l = X2 then E([<argument2>:n, LD, DE, '1) else 0)

195

Note that if Xt is a prototype machine, then Type(Xt) = Xt. Here 0 is a degenerate
machine with no actions.

This almost gives us the semantics that we want, except for a possible problem in the
order of evaluation: we have not constrained the argument machines to ensure that
they are evaluated (executed) before the subprogram itself is evaluated. To accomplish
this, for each argument that requires elaboration, we introduce a temporary local vari­
able to carry the result of the argument evaluation forward to the subprogram itself.
Ignoring type checking again, and leaving out the conditionals (we assume that both
arguments require elaboration) we now have:

E([subprogramName «argumentt>, <argument2» i:n, LD, DE, '1)

= (VII V2 1 E([<argumentt>:n, LD, DE, '1)[VI/out];

E([<argument2>:n, LD, DE, '1)[Vvout];

New(Ref(subprogramName, DE»[V I/Pt, V VP2])\sorn..V I)USorri..V 2)

where [VII ou t] relabels the output formal parameter with the actions of V 1. Note that
we have somewhat arbitrarily determined an order of evaluation for the actual param­
eter expressions.

In [3] we have explored event more complex type checking and 'Overload resolution
schemes. While these schemes add significantly to the type information that is passed
around between references (the reference functions themselves become very compli­
cated), the basic structure of the elaboration in terms of the structure of machines still
remains the same.

A final note on subprogram calls - we have made no distinction between functions and
procedures in this semantics, nor have we made any distinction between calls that oc­
cur as an actual statement and calls that occur as part of a subexpression. We note that
if one of the actual arguments to the subprogram was accidentally a procedure, then
the typed reference to the subprogram would fail to resolve to a machine. This further
illustrates the generality of this approach to semantics.

5.5 Declarative Blocks

A declarative block is a collection of declarations followed by a sequence of state­
ments and possibly an exception handler. There are a number of possible semantics for
declarative blocks, each reflecting a different visibility semantics for the declarations
that occur in the block. We show two possibilities here.

For let or let* visibility semantics14, we have:

196

E([blockname:
declare

<declarative part>
begin

<sequence of statements>
exception

<exception handler list>

end] ,LD, DE, '1)

M= < E([<declarative part>],M:LD,DE,'1)I

E([<sequence of sta tements>] ,M:LD, M:DE, '1) I

E([<exception handler list>],M:LD,M:DE,'1)

!ere M:LD is a new local declaration set associated with the newly created machine
I, and M:DE is a new direct environment associated with the same machine.

Ve have the following side effects:

LD = LD u {(blockname,M)}

M:DE = M:LD ~ DE

lere ~ denotes a modified set union [4][5] that formalizes the hiding of some mem­
er of the second set (DE) by members of the first set (M:LD).

'or letrec15 visibility semantics the direct environment passed to the declarative part
lould be different, giving:

M < E([<declarati ve part>], M:LD, M:DE, '1) I

E([<sequence of statements>],M:LD,M:DE,'1)I

E([<exception handler list>], M:LD, M:DE, '1)

5.1 Declarative Part

he elaboration of the declarative part simply elaborates each of the declarations, com­
osing any machines that result in parallel. It is important to note that the elaboration
f a variable will return a machine. The elaboration of a function declaration or type
xlaration will not return a machine - the created machine will be associated with the
xlared name in the local declaration set LD, but no machine is actually instantiated
; part of the elaboration.

or let or letrec visibility semantics, we would have

14. Let and let* [11] are constructs arising in the language scheme in which declara­
tions in a block are not visible at all to each other (let semantics) or earlier declara­
tions are visible to later declarations (let* semantics). [4][5] cover the variations in
visibility semantics in more detail.
15. In letrec semantics [11] declarations in a block are all mutually visible, thus
allowing recursive declarations.

E([<declarative part>], LD, DE, '1)

= < E([<declarationl>]' LD, DE, '1) I

E([<declaration2>]' LD, DE, '1) 1 •• .1

E([<declarationn>] ,LD, DE, '1) >

197

It is important to note that for letrec visibility semantics, the enclosing declarative
block has included LD in the computation of DE. Thus the elaboration of one decla­
ration could well affect the meaning of a reference in another. This points out the im­
portance of the order of elaboration in determining the meaning of a program. Some
languages put such severe constraints upon the relative positions of declarations with
respect to references that the order of elaboration is not an issue. Other languages, like
Ada, provide mechanisms to specify the order of elaboration in cases where the order
may not be sufficiently constrainedl6. In [4] we show that an appropriate ordering, if
one exists, may be determined through the construction of a dependency graph relating
declarations and references. Cycles in this graph indicate that no proper elaboration or­
dering exists.

For let* visibility semantics, we would have

E([<declarative part>],LD,DEo,'1)

= < E([<declarationl>], LDl>DEo,'1)I

E([<declaration2>]' LD2, DEI' '1) 1 •• .1

E([<declarationn>] ,LDn, DEn-I' '1)

Here the order of elaboration is defined to be the order of declaration. For these elab­
orations, we have:

LDo=0

Prior to the ith elaboration, we have:

LDj = LDj_1

D~ = LDj_1 u DEo

Mter the ith elaboration, LD j also contains the declaration resulting from the elabora­
tion. Mter the last elaboration, we compute the returned set of local declarations:

LD=LDn

55.2 Sequence a/Statements

Because statements may have labels on them and references to them, elaboration order
is important here as well. We show the semantics for letrec style visibility17 (for se-

16. [1] p. 10-11
17. For sequential elaboration order and let* visibility, the computation of the local
and direct environments is exactly the same as for the let* visibility of declarations.

198

quential or let* visibility, the local and direct environments are computed exactly as
for the let* declarative items).

E([<sequence of statements>], LD, DE, '1)

= (E([<statement1>] ,LD, DE, '1);

E([<statement2>], LD, DE, '1) ; •.• ;

E([<statementn>], LD, DE, '1) >

6.0 Summary

We have given an outline of how the semantics of a programming language can be con­
structively given in tenns of primitive state machines and compositions of state ma­
chines. Thus the semantics of a program is given as an abstract state machine whose
structure is constructively specified by the program itself. We have shown that the
dominant concepts of a programming language are readily understood in tenns of
three basic semantic concepts: state machines, state types (sets of isomorphic state ma­
chines), and generic machines (parameterized specifications of state types.) We have
shown that programs, subprograms and data types all have a unifonn interpretation as
state types. We have described the relationship between the identifiers in the language
and the semantic model elements that they correspond to, and in [4] and [5] we have
provided a set-theoretic description of the computation of visibility in programming
languages.

Constructive semantics is fully abstract in the sense that behavioral equiValence de­
fines equivalence classes of semantic expressions, and these equivalence classes can
be taken to be the fully abstract semantics of the expression. We have left two interest­
ing questions open in this area Is there a nonnal fonn for machine algebra expressions
that would ease their syntactic comparison? Is behavioral equivalence decidable in the
restricted classes of machines used in our semantics? Brookes' work on nonnal fonns
of synchronization trees18 (which underlie HCCS) leads us to believe that for finite
machines a unique (up to the ordering of tenns) nonnal fonn exists in HCCS for each
equivalence class, but we suspect that the existence of a nonnal fonn of machine alge­
bra expressions is precluded by the constraints that our machine algebra places on the
fonn of HCCS expressions.

References

1. Ada Prograroming Language, ANSl/MlL-STD-1815A (1983)

2. Brookes, Stephen D, A Model for Communicating Sequential Processes, Ph.D.
thesis, University College, Oxford University (1983)

18. [2] pp. 99-100.

199

3. Brown, Paul C.; Oconnor, D.M., and Kelliher, Tim, "An Extended Overload
Resolution Algorithm that allows Types and Subprograms as First
Class Objects," internal document, GE Corporate Research. and
Development Center, Schenectady, New York (1989)

4. Brown, Paul C., Computing Visibility in Programming Languages, Technical
Report 9OCRD098, GE Research and Development Center,
Schenectady, New York 12301 (1990)

5. Brown, Paul C., Constructive Semantics, Ph.D. thesis, Rensselaer Polytechnic
Institute, Troy, New York (1992)

6. Eaker, Charles E., "Cceating Software Should Be Easy," (unpublished) GE
Corporate Research and Development Center, Schenectady, New
York (1991)

7. Eaker, Charles E., "How to Create Software: A Guide to the Perplexed,"
(unpublished) GE Corporate Research and Development Center,
Schenectady, New York (1991)

8. Hoare, C.A.R., Communicatina Segpential Processes, Prentice Hall
International (1985)

9. Milner, Robin, "Calculi for Synchrony and Asynchrony," Journal of Theoretical
Computer Science, Vol. 25, pp 267-310 (1983)

10. Milner, Robin, Communication and Concurrency, Prentice Hall International
(1989)

11. Rees, Jonathan and Clinger, William (eds), "Revised3 Report on the Algorithmic
Language Scheme," SIGPLANNotices, Vol. 21, No. 12 (1986).

12. Rumbaugh, James et. al., Object Oriented MOdeJioa and Desian, Prentice Hall
(1991)

13. Van Benthem, Johan, The Logic of Time: A Model-Theoretic Inyestigation into
the Varieties of Temporal Ontology and Temporal Discourse, D. Reidel
Publishing Company (1982),

